Skip to main content
Log in

Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We analyze the propagation properties of the numerical versions of one- and two-dimensional wave equations, semi-discretized in space by finite difference schemes. We focus on high-frequency solutions whose propagation can be described, both at the continuous and at the semi-discrete levels, by micro-local tools. We consider uniform and non-uniform numerical grids as well as constant and variable coefficients. The energy of continuous and semi-discrete high-frequency solutions propagates along bi-characteristic rays, but their dynamics are different in the continuous and the semi-discrete setting, because of the nature of the corresponding Hamiltonians. One of the main objectives of this paper is to illustrate through accurate numerical simulations that, in agreement with micro-local theory, numerical high-frequency solutions can bend in an unexpected manner, as a result of the accumulation of the local effects introduced by the heterogeneity of the numerical grid. These effects are enhanced in the multi-dimensional case where the interaction and combination of such behaviors in the various space directions may produce, for instance, the rodeo effect, i.e., waves that are trapped by the numerical grid in closed loops, without ever getting to the exterior boundary. Our analysis allows to explain all such pathological behaviors. Moreover, the discussion in this paper also contributes to the existing theory about the necessity of filtering high-frequency numerical components when dealing with control and inversion problems for waves, which is based very much on the theory of rays and, in particular, on the fact that they can be observed when reaching the exterior boundary of the domain, a key property that can be lost through numerical discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. G. Allaire. Dispersive limits in the homogenization of the wave equation. Ann. Fac. Sci. Toulouse Math., 12(4):415–431, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Allaire and A. Pjatnickiĭ. Homogenization of the Schrödinger equation and effective mass theorems. Commun. Math. Phys., 258(1):1–22, 2005.

    Article  Google Scholar 

  3. C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Baudouin and S. Ervedoza. Convergence of an inverse problem for a 1-D discrete wave equation. SIAM J. Control Optim., 51(1):556–598, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Baudouin, S. Ervedoza, and A. Osses. Stability of an inverse problem for the discrete wave equation and convergence results. J. Math. Pures Appl., 103(6):1475–1522, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Burq and P. Gérard. Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C.R. Acad. Sci. Paris Sér. I, 325(7):749–752, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Burq and J.-M. Schlenker. Contrôle de l’équation des ondes dans des ouverts comportant des coins. Bull. Soc. Math. France, 126(4):601, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Castro and S. Micu. Boundary controllability of a linear semi-discrete 1dd wave equation derived from a mixed finite element method. Numer. Math., 102(3):413–462, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Castro and E. Zuazua. A remark on the spectral asymptotic analysis in homogenization. C. R. Acad. Sci. Ser. I, 322(11):1043–1047, 1996.

    MathSciNet  MATH  Google Scholar 

  10. C. Castro and E. Zuazua. Low frequency asymptotic analysis of a string with rapidly oscillating density. SIAM J. Appl. Math., 60(4):1205–1233, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Castro and E. Zuazua. Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal., 164(1):39–72, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Ervedoza. Observability properties of a semi-discrete 1d wave equation derived from a mixed finite element method on nonuniform meshes. ESAIM: Control Optim. Calc. Var., 16(2):298–326, 2010.

    MathSciNet  MATH  Google Scholar 

  13. S. Ervedoza, A. Marica, and E. Zuazua. Numerical meshes ensuring uniform observability of one-dimensional waves: construction and analysis. IMA J. Numer. Anal., 36(2):503–542, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Ervedoza and E. Zuazua. The wave equation: control and numerics. Control and stabilization of PDEs, P.M. Cannarsa and J.M. Coron eds., Lecture Notes in Mathematics, 2048:245–340, 2012.

  15. S. Ervedoza and E. Zuazua. On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, , 2013.

  16. P. Gérard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761–1794, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Glowinski. Ensuring well-posedness by analogy; Stokes problem and boundary control for the wave equation. J. Comput. Phys., 103(2):189–221, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. Glowinski and L. Chin-Hsien. On the numerical implementation of the Hilbert uniqueness method for the exact boundary controllability of the wave equation. C. R. Acad. Sc. Sér. 1 Math., 311(2):135–142, 1990.

    MathSciNet  MATH  Google Scholar 

  19. R. Glowinski, W. Kinton, and M. F. Wheeler. A mixed finite element formulation for the boundary controllability of the wave equation. Internat. J.Numer. Methods Engrg, 27(3):623–635, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Glowinski, C.-H. Li, and J.-L. Lions. A numerical approach to the exact boundary controllability of the wave equation (i) Dirichlet controls: Description of the numerical methods. Japan J. Appl. Math., 7(1):1–76, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Hormander. The analysis of linear partial differential operators, Vols I, III, 1985.

  22. L. I. Ignat and E. Zuazua. Convergence of a two-grid algorithm for the control of the wave equation. J. Europ. Math. Soc., 11(2):351–391, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. A. Infante and E. Zuazua. Boundary observability for the space semi-discretizations of the 1d wave equation. Math. Model. Numer. Anal., 33(2):407–438, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  24. P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamericana, 9(3):553–618, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Loreti and M. Mehrenberger. An Ingham type proof for a two-grid observability theorem. ESAIM: Control Optim. Calc. Var., 14(3):604–631, 2008.

    MathSciNet  MATH  Google Scholar 

  26. F. Macià. Propagación y control de vibraciones en medios discretos y continuos. PhD thesis, Universidad Complutense de Madrid, 2002.

  27. F. Macía and E. Zuazua. On the lack of observability for wave equations: a gaussian beam approach. Asympt. Anal., 32(1):1–26, 2002.

    MathSciNet  MATH  Google Scholar 

  28. A. Marica and E. Zuazua. Propagation of 1d waves in regular discrete heterogeneous media: a Wigner measure approach. Found. Comp. Math., 15(6):1571–1636, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Markowich, N. Mauser, and F. Poupaud. A Wigner-function approach to (semi) classical limits: Electrons in a periodic potential. J. Math. Phys., 35(3):1066–1094, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Micu. Uniform boundary controllability of a semi-discrete 1dd wave equation. Numer. Math., 91(4):723–768, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1d wave equation. C.R. Acad. Sci. Paris, 338(5):413–418, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Pjatnickiĭ. On the limit behavior of the domain of dependence of a hyperbolic equation with rapidly oscillating coefficients. Sbornik: Mathematics, 43(1):117–131, 1982.

    Article  Google Scholar 

  33. J. Ralston. Gaussian beams and the propagation of singularities. Studies in partial differential equations, 23:206–248, 1982.

    MathSciNet  MATH  Google Scholar 

  34. J. Rauch, X. Zhang, and E. Zuazua. Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl., 84(4):407–470, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  35. L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sec. A, 115(3-4):193–230, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  36. L. N. Trefethen. Group velocity in finite difference schemes. SIAM rev., 24(2):113–136, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. N. Trefethen. Wave propagation and stability for finite difference schemes. PhD thesis, Stanford University, 1982.

  38. R. Vichnevetsky. Propagation properties of semi-discretizations of hyperbolic equations. Math. Comp. Simul., 22(2):98–102, 1980.

    Article  MATH  Google Scholar 

  39. R. Vichnevetsky. Energy and group velocity in semi discretizations of hyperbolic equations. Math. Comp. Simul., 23(4):333–343, 1981.

    Article  MATH  Google Scholar 

  40. R. Vichnevetsky. Propagation through numerical mesh refinement for hyperbolic equations. Math. Comp. Simul., 23(4):344–353, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  41. R. Vichnevetsky. Wave propagation and reflection in irregular grids for hyperbolic equations. Appl. Numer. Math., 3:133–166, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Vichnevetsky and J. B. Bowles. Fourier analysis of numerical approximations of hyperbolic equations, volume 5. Siam, 1982.

  43. D. H. Von Seggern. Practical handbook of curve design and generation. CRC Press, 1994.

  44. E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40(5):749, 1932.

    Article  MATH  Google Scholar 

  45. E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2d wave equation in the square. J. Math. Pures Appl., 78(5):523–563, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  46. E. Zuazua. Propagation, observation, control and numerical approximation of waves. SIAM Rev., 47(2):197–243, 2005.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Biccari.

Additional information

Communicated by Endre Süli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694126-DyCon). The work of UB and EZ is partially supported by the Grant MTM2017-92996-C2-1-R COSNET of MINECO (Spain), the ELKARTEK project KK-2018/00083 ROAD2DC of the Basque Government, and the Air Force Office of Scientific Research under Award No: FA9550-18-1-0242. The work of AM is partially supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-2233, within PNCDI III. The work of EZ is partially supported by the Alexander von Humboldt Professorship program, the European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 765579-ConFlex, and the Grant ICON-ANR-16-ACHN-0014 of the French ANR.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biccari, U., Marica, A. & Zuazua, E. Propagation of One- and Two-Dimensional Discrete Waves Under Finite Difference Approximation. Found Comput Math 20, 1401–1438 (2020). https://doi.org/10.1007/s10208-020-09445-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-020-09445-0

Keywords

Mathematics Subject Classification

Navigation