Skip to main content
Log in

Numerical Computation of Galois Groups

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The Galois/monodromy group of a family of geometric problems or equations is a subtle invariant that encodes the structure of the solutions. We give numerical methods to compute the Galois group and study it when it is not the full symmetric group. One algorithm computes generators, while the other studies its structure as a permutation group. We illustrate these algorithms with examples using a Macaulay2 package we are developing that relies upon Bertini to perform monodromy computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The defining polynomial of degree 12 was computed in [32, Ex. 6] and is available at the Web site https://sites.google.com/site/rootclassification/publications/DD.

  2. http://home.uchicago.edu/~joisro/quickLinks/NCGG/.

References

  1. H. Alt, Über die erzeugung gegebener ebener kurven mit hilfe des gelenkviereckes, Zeitschrift für Angewandte Mathematik und Mechanik, 3 (1923), pp. 13–19.

    Article  MATH  Google Scholar 

  2. B. Anderson and U. Helmke, Counting critical formations on a line, SIAM Journal on Control and Optimization, 52 (2014), pp. 219–242.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Bates, E. Gross, A. Leykin, and J. Rodriguez, Bertini for Macaulay2. arXiv:1603.05908, 2013.

  4. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Bertini: Software for numerical algebraic geometry. Available at http://bertini.nd.edu.

  5. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Adaptive multiprecision path tracking, SIAM J. Numer. Anal., 46 (2008), pp. 722–746.

  6. D. Bates, J. Hauenstein, A. Sommese, and C. Wampler, Numerically solving polynomial systems with Bertini, vol. 25 of Software, Environments, and Tools, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2013.

  7. D. Brake, J. Hauenstein, A. Murray, D. Myszka, and C. Wampler, The complete solution of Alt-Burmester synthesis problems for four-bar linkages, Journal of Mechanisms and Robotics, 8 (2016), p. 041018.

    Article  Google Scholar 

  8. C. Brooks, A. Martín del Campo, and F. Sottile, Galois groups of Schubert problems of lines are at least alternating, Trans. Amer. Math. Soc., 367 (2015), pp. 4183–4206.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Burmester, Lehrbuch der Kinematic, Verlag Von Arthur Felix, Leipzig, Germany, 1886.

    MATH  Google Scholar 

  10. P. Cameron, Permutation groups, vol. 45 of London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 1999.

  11. A. Dimca, Singularities and topology of hypersurfaces, Universitext, Springer-Verlag, New York, 1992.

    Book  MATH  Google Scholar 

  12. J. Draisma and J. I. Rodriguez, Maximum likelihood duality for determinantal varieties, International Mathematics Research Notices, 2014(2014), pp. 5648–5666.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Galligo and A. Poteaux, Computing monodromy via continuation methods on random Riemann surfaces, Theoret. Comput. Sci., 412 (2011), pp. 1492–1507.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

  15. P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original.

  16. J. Harris, Galois groups of enumerative problems, Duke Math. J., 46 (1979), pp. 685–724.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Hauenstein, I. Haywood, and A. Liddell, Jr., An a posteriori certification algorithm for Newton homotopies, in ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 248–255.

  18. J. Hauenstein, J. Rodriguez, and B. Sturmfels, Maximum likelihood for matrices with rank constraints, Journal of Algebraic Statistics, 5 (2014), pp. 18–38.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Hauenstein and A. Sommese, Witness sets of projections, Appl. Math. Comput., 217 (2010), pp. 3349–3354.

    MathSciNet  MATH  Google Scholar 

  20. N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four for real Schubert calculus with isotropic flags, 2016. Canadian Mathematical Bulletin, to appear.

  21. N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four in real Schubert calculus, J. Reine Angew. Math., 714 (2016), pp. 151–174.

  22. C. Hermite, Sur les fonctions algébriques, CR Acad. Sci.(Paris), 32 (1851), pp. 458–461.

    Google Scholar 

  23. D. Higman, Intersection matrices for finite permutation groups, J. Algebra, 6 (1967), pp. 22–42.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Hoşten, A. Khetan, and B. Sturmfels, Solving the likelihood equations, Found. Comput. Math., 5 (2005), pp. 389–407.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Huh and B. Sturmfels, Likelihood geometry, in Combinatorial algebraic geometry, vol. 2108 of Lecture Notes in Math., Springer, 2014, pp. 63–117.

  26. C. Jordan, Traité des Substitutions, Gauthier-Villars, Paris, 1870.

    MATH  Google Scholar 

  27. A. Leykin and F. Sottile, Galois groups of Schubert problems via homotopy computation, Math. Comp., 78 (2009), pp. 1749–1765.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Martín del Campo and F. Sottile, Experimentation in the Schubert calculus, in Schubert Calculus—Osaka 2012, Mathematical Society of Japan, Tokyo, 2016, pp. 295–336.

  29. D. Molzahn, M. Niemerg, D. Mehta, and J. Hauenstein, Investigating the maximum number of real solutions to the power flow equations: Analysis of lossless four-bus systems. arXiv:1603.05908, 2016.

  30. A. Poteaux, Computing monodromy groups defined by plane algebraic curves, in SNC’07, ACM, New York, 2007, pp. 36–45.

  31. N. Rennert and A. Valibouze, Calcul de résolvantes avec les modules de Cauchy, Experiment. Math., 8 (1999), pp. 351–366.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Rodriguez and X. Tang, Data-discriminants of likelihood equations, in Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC ’15, New York, NY, USA, 2015, ACM, pp. 307–314.

  33. J. Ruffo, Y. Sivan, E. Soprunova, and F. Sottile, Experimentation and conjectures in the real Schubert calculus for flag manifolds, Experiment. Math., 15 (2006), pp. 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Scott, Representations in characteristic \(p\), in The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979), vol. 37 of Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 1980, pp. 319–331.

  35. A. Sommese, J. Verschelde, and C. Wampler, Introduction to numerical algebraic geometry, in Solving polynomial equations, vol. 14 of Algorithms Comput. Math., Springer, Berlin, 2005, pp. 301–335.

  36. A. Sommese and C. Wampler, Numerical algebraic geometry, in The mathematics of numerical analysis (Park City, UT, 1995), vol. 32 of Lectures in Appl. Math., Amer. Math. Soc., Providence, RI, 1996, pp. 749–763.

  37. A. Sommese and C. Wampler, The numerical solution of systems of polynomials, World Scientific Publishing Co. Pte.Ltd., Hackensack, NJ, 2005.

  38. A. Sommese and C. Wampler, Exceptional sets and fiber products, Found. Comput. Math., 8 (2008), pp. 171–196.

  39. F. Sottile and J. White, Double transitivity of Galois groups in Schubert calculus of Grassmannians, Algebr. Geom., 2 (2015), pp. 422–445.

    Article  MathSciNet  MATH  Google Scholar 

  40. Y. Tong, D. Myszka, and A. Murray, Four-bar linkage synthesis for a combination of motion and path-point generation, Proceedings of the ASME International Design Engineering Technical Conferences, DETC2013-12969 (2013).

  41. R. Vakil, Schubert induction, Ann. of Math. (2), 164 (2006), pp. 489–512.

  42. O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Annals of Mathematics, 38 (1937), pp. 131–141.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Israel Rodriguez.

Additional information

Communicated by J E Cremona.

Research of Hauenstein supported in part by NSF Grant ACI-1460032, Sloan Research Fellowship BR2014-110 TR14, and Army Young Investigator Program (YIP) W911NF-15-1-0219.

Research of Rodriguez supported in part by NSF Grant DMS-1402545.

Research of Sottile supported in part by NSF Grant DMS-1501370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauenstein, J.D., Rodriguez, J.I. & Sottile, F. Numerical Computation of Galois Groups. Found Comput Math 18, 867–890 (2018). https://doi.org/10.1007/s10208-017-9356-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-017-9356-x

Keywords

Mathematics Subject Classification

Navigation