Skip to main content

Advertisement

Log in

Cybersecurity challenges in IoT-based smart renewable energy

  • Survey
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

The Internet of Things (IoT) makes it possible to collect data from, and issue commands to, devices via the Internet, eliminating the need for humans in the process while increasing productivity, accuracy, and economic value. Therefore, the integration of IoT plays a crucial role in achieving high efficiency and sustainability in the production of renewable energy that could be used to meet future electricity needs. While this approach has many significant benefits, it also opens smart renewable energy to cyberattacks, giving hackers a new window of opportunity to take advantage of renewable energy’s vulnerabilities. This obviously affects the financial and physical functioning of smart renewable energy. This article reviews the literature on cybersecurity threats and vulnerabilities in IoT-based smart renewable energy and cyberattacks on power systems. False data injection, replay, denial of service, and brute force credential attacks have been identified as the main threats to IoT-based smart renewable energy. These threats exploit IoT-based smart renewable energy’s vulnerabilities such as the usage of insecure communication protocols, poor encryption techniques, poor hash algorithms, lack of access control, lack of parameter sanitization, and the inappropriate use of authentication alongside encryption. The findings of this review will assist researchers in better understanding the issues surrounding the cybersecurity of IoT-based smart renewable energy and the needs for grid security in light of the exponential growth in the number of renewable energy sources connected to the grid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated.

References

  1. Cotfas, P.A., Cotfas, D.T.: Solar hybrid system component study in low concentrated sunlight. Int. J. Photoenergy 2021, 1–13 (2021). https://doi.org/10.1155/2021/6677473

    Article  Google Scholar 

  2. Yadav, A., et al. Solar-wind based hybrid energy system: modeling and simulation. In: 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), IEEE, pp. 586–570 (2021). https://doi.org/10.1109/RDCAPE52977.2021.9633590.

  3. Batcha, R.R., Geetha, M.K. A survey on IOT based on renewable energy for efficient energy conservation using machine learning approaches. In: 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), IEEE, pp 123–128 (2020). https://doi.org/10.1109/ICETCE48199.2020.9091737.

  4. Rani, D.P., Suresh, D., Kapula, P.R., Akram, C.M., Hemalatha, N., Soni, P.K.: IoT based smart solar energy monitoring systems. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.07.293

    Article  Google Scholar 

  5. Goudarzi, A., Ghayoor, F., Waseem, M., Fahad, S., Traore, I.: A survey on IoT-enabled smart grids: emerging, applications, challenges, and outlook. Energies 15(19), 6984 (2022). https://doi.org/10.3390/en15196984

    Article  Google Scholar 

  6. Minh, Q.N., et al.: Edge computing for IoT-enabled smart grid the future of energy. Energies (2022). https://doi.org/10.3390/en15176140

    Article  Google Scholar 

  7. Hueros-Barrios, P.J., Rodríguez Sánchez, F.J., Martín, P., Jiménez, C., Fernández, I.: Addressing the cybersecurity vulnerabilities of advanced nanogrids: a practical framework. Internet Things 20, 100620 (2022)

    Article  Google Scholar 

  8. Li, P., Liu, Y., Xin, H., Jiang, X.: A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans. Industr. Inf. 14(10), 4343–4352 (2018). https://doi.org/10.1109/TII.2017.2788868

    Article  Google Scholar 

  9. Yu, J.J.Q., Hou, Y., Li, V.O.K.: Online false data injection attack detection with wavelet transform and deep neural networks. IEEE Trans. Industr. Inf. 14(7), 3271–3280 (2018). https://doi.org/10.1109/TII.2018.2825243

    Article  Google Scholar 

  10. Balda, J.C., Mantooth, A., Blum, R., Tenti, P.: Cybersecurity and power electronics: addressing the security vulnerabilities of the internet of things. IEEE Power Electr. Magaz. 4(4), 37–43 (2017). https://doi.org/10.1109/MPEL.2017.2761422

    Article  Google Scholar 

  11. Ye, J., et al.: A Review of cyber-physical security for photovoltaic systems. IEEE J. Emerg. Select. Topics Power Electr. 10(4), 4879–4901 (2022). https://doi.org/10.1109/JESTPE.2021.3111728

    Article  Google Scholar 

  12. How to Protect Your Solar Panels from Thieves? | LEDwatcher. Accessed 03 Feb 2023 from https://www.ledwatcher.com/how-to-protect-your-solar-panels-from-thieves/

  13. Kraus, H. LibGuides: Topic: Systematic Searching for Evidence Synthesis: Searching Scopus. Accessed 16 Feb 2023 from https://guides.lib.uconn.edu/systematic_searching/scopus

  14. Ferrier, E. LibGuides: Guide to Searching: Citation Searching. Accessed 16 Feb 2023 from https://libguides.brown.edu/searching/citation

  15. Moher, D., et al.: Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 4(1), 1 (2015). https://doi.org/10.1186/2046-4053-4-1

    Article  Google Scholar 

  16. Prosumer Nanogrids: A Cybersecurity Assessment | IEEE Journals & Magazine | IEEE Xplore. Accessed 03 Feb 2023 from https://ieeexplore.ieee.org/abstract/document/9141261

  17. Nejabatkhah, F., et al.: Cyber-security of smart microgrids: a survey. Energies (2021). https://doi.org/10.3390/en14010027

    Article  Google Scholar 

  18. Gunduz, M.Z., Das, R.: Cyber-security on smart grid: threats and potential solutions. Comput. Netw. (2020). https://doi.org/10.1016/j.comnet.2019.107094

    Article  Google Scholar 

  19. Faquir, D., Chouliaras, N., Sofia, V., Olga, K., Maglaras, L.: Cybersecurity in smart grids, challenges and solutions. AIMS Electr. Electr. Eng. 5(1), 24–37 (2021). https://doi.org/10.3934/electreng.2021002

    Article  Google Scholar 

  20. Volkova, A., Niedermeier, M., Basmadjian, R., de Meer, H.: Security challenges in control network protocols: a survey. IEEE Commun. Surv. Tutor. 21(1), 619–639 (2019). https://doi.org/10.1109/COMST.2018.2872114

    Article  Google Scholar 

  21. Ouaissa, M.: Cyber Security Issues for IoT based Smart Grid Infrastructure. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/937/1/012001

    Article  Google Scholar 

  22. Koohang, A., Sargent, C.S., Nord, J.H., Paliszkiewicz, J.: Internet of things (IoT): From awareness to continued use. Int. J. Inf. Manag. (2022). https://doi.org/10.1016/j.ijinfomgt.2021.102442

    Article  Google Scholar 

  23. Kopetz, H., Steiner, W.: Internet of Things, in Real-Time Systems: Design Principles for Distributed Embedded Applications. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-11992-7_13

    Book  Google Scholar 

  24. Laghari, A.A., Wu, K., Laghari, R.A., Ali, M., Khan, A.A.: A review and state of art of Internet of Things (IoT). Arch. Computat. Methods Eng. 29(3), 1395–1413 (2022). https://doi.org/10.1007/s11831-021-09622-6

    Article  Google Scholar 

  25. Biegańska, M.: IoT-based decentralized energy systems. Energies (2022). https://doi.org/10.3390/en15217830

    Article  Google Scholar 

  26. Rupesh, M., Selvan, N.A.: Design of IoT based smart energy meter for home appliances. J. Phys. Conf. Ser. (2021). https://doi.org/10.1088/1742-6596/1964/5/052001

    Article  Google Scholar 

  27. Sezer, O.B., Dogdu, E., Ozbayoglu, A.M.: Context-aware computing, learning, and big data in internet of things: a survey. IEEE Internet Things J. 5(1), 1–27 (2018). https://doi.org/10.1109/JIOT.2017.2773600

    Article  Google Scholar 

  28. The Use of IoT in Renewable Energy Generation. (2019). Accessed 04 Feb 2023 from https://www.allerin.com/blog/the-use-of-iot-in-renewable-energy-generation

  29. Ponnalagarsamy, S., et al.: Impact of IoT on renewable energy. In: Singh, I., et al. (eds.) IoT Applications Computing. IntechOpen (2022)

    Google Scholar 

  30. Eltamaly, A.M., Alotaibi, M.A., Alolah, A.I., Ahmed, M.A.: IoT-based hybrid renewable energy system for smart campus. Sustainability 13(15), 8555 (2021). https://doi.org/10.3390/su13158555

    Article  Google Scholar 

  31. Ahmed, M.A., Eltamaly, A.M., Alotaibi, M.A., Alolah, A.I., Kim, Y.-C.: Wireless network architecture for cyber physical wind energy system. IEEE Access 8, 40180–40197 (2020). https://doi.org/10.1109/ACCESS.2020.2976742

    Article  Google Scholar 

  32. Dubasi, Y. et al. Security vulnerability and mitigation in photovoltaic systems. In: 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), pp. 1–7 (2021). https://doi.org/10.1109/PEDG51384.2021.9494252.

  33. National Vulnerability Database. Accessed 04 Feb 2023 from https://nvd.nist.gov/

  34. Search Engine for Security Intelligence | Vulners. Accessed 04 Feb 2023 from https://vulners.com/

  35. Habibi, M.R., Baghaee, H.R., Dragičević, T., Blaabjerg, F.: Detection of false data injection cyber-attacks in DC microgrids based on recurrent neural networks. IEEE J. Emerg. Select. Topics Power Electr. 9(5), 5294–5310 (2021). https://doi.org/10.1109/JESTPE.2020.2968243

    Article  Google Scholar 

  36. Tuyen, N.D., Quan, N.S., Linh, V.B., Van Tuyen, V., Fujita, G.: A Comprehensive review of cybersecurity in inverter-based smart power system amid the boom of renewable energy. IEEE Access 10, 35846–35875 (2022). https://doi.org/10.1109/ACCESS.2022.3163551

    Article  Google Scholar 

  37. Carter, C., et al. Cyber security assessment of distributed energy resources. In 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pp. 2135–2140 (2017). https://doi.org/10.1109/PVSC.2017.8366503.

  38. Li, Z., Shahidehpour, M., Aminifar, F.: Cybersecurity in distributed power systems. Proc. IEEE 105(7), 1367–1388 (2017). https://doi.org/10.1109/JPROC.2017.2687865

    Article  Google Scholar 

  39. Sundararajan, A., Khan, T., Moghadasi, A., Sarwat, A.I.: Survey on synchrophasor data quality and cybersecurity challenges, and evaluation of their interdependencies. J. Mod. Power Syst. Clean Energy 7(3), 449–467 (2019). https://doi.org/10.1007/s40565-018-0473-6

    Article  Google Scholar 

  40. Sundararajan, A., Chavan, A., Saleem, D., Sarwat, A.: A survey of protocol-level challenges and solutions for distributed energy resource cyber-physical security. Energies 11(9), 2360 (2018). https://doi.org/10.3390/en11092360

    Article  Google Scholar 

  41. Saleem, D., Sundararajan, A., Sanghvi, A., Rivera, J., Sarwat, A.I., Kroposki, B.: A multidimensional holistic framework for the security of distributed energy and control systems. IEEE Syst. J. 14(1), 17–27 (2020). https://doi.org/10.1109/JSYST.2019.2919464

    Article  Google Scholar 

  42. Jacobs, N. et al. Analysis of system and Interoperability Impact from securing communications for distributed energy resources. In: 2019 IEEE Power and Energy Conference at Illinois (PECI), pp. 1–8 (2019). https://doi.org/10.1109/PECI.2019.8698915.

  43. Gholami, S. A cyber attack resilient control for distributed energy resources. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6 (2017). https://doi.org/10.1109/ISGTEurope.2017.8260213.

  44. [FDIA] False Data Injection Definition, Examples, Prevention (2022). Accessed 04 Feb 2023 from https://crashtest-security.com/false-data-injection-attack/

  45. Ameli, A., Hooshyar, A., Yazdavar, A.H., El-Saadany, E.F., Youssef, A.: Attack detection for load frequency control systems using stochastic unknown input estimators. IEEE Trans. Inf. Forensics Secur. 13(10), 2575–2590 (2018). https://doi.org/10.1109/TIFS.2018.2824253

    Article  Google Scholar 

  46. Huang, T., Satchidanandan, B., Kumar, P.R., Xie, L.: An online detection framework for cyber attacks on automatic generation control. IEEE Trans. Power Syst. 33(6), 6816–6827 (2018). https://doi.org/10.1109/TPWRS.2018.2829743

    Article  Google Scholar 

  47. Tan, R., et al.: Modeling and mitigating impact of false data injection attacks on automatic generation control. IEEE Trans. Inf. Forensics Secur. 12(7), 1609–1624 (2017). https://doi.org/10.1109/TIFS.2017.2676721

    Article  Google Scholar 

  48. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review of false data injection attacks against modern power systems. IEEE Trans. Smart Grid 8(4), 1630–1638 (2017). https://doi.org/10.1109/TSG.2015.2495133

    Article  Google Scholar 

  49. Beg, O.A., Johnson, T.T., Davoudi, A.: Detection of false-data injection attacks in cyber-physical DC microgrids. IEEE Trans. Industr. Inf. 13(5), 2693–2703 (2017). https://doi.org/10.1109/TII.2017.2656905

    Article  Google Scholar 

  50. Konstantinou, C., Maniatakos, M.: Hardware-layer intelligence collection for smart grid embedded systems. J Hardw Syst Secur 3(2), 132–146 (2019). https://doi.org/10.1007/s41635-018-0063-0

    Article  Google Scholar 

  51. Islam, S.N., Mahmud, M.A., Oo, A.M.T.: Impact of optimal false data injection attacks on local energy trading in a residential microgrid. ICT Express 4(1), 30–34 (2018). https://doi.org/10.1016/j.icte.2018.01.015

    Article  Google Scholar 

  52. Aoufi, S., Derhab, A., Guerroumi, M.: Survey of false data injection in smart power grid: attacks, countermeasures and challenges. J. Inf. Secur. Appl. (2020). https://doi.org/10.1016/j.jisa.2020.102518

    Article  Google Scholar 

  53. Teymouri, A., et al. Cyber security risk assessment of solar PV units with reactive power capability. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC: IEEE, pp. 2872–2877 (2018). https://doi.org/10.1109/IECON.2018.8591583.

  54. Sridhar, S., Manimaran, G. Data integrity attack and its impacts on voltage control loop in power grid. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–6 (2011). https://doi.org/10.1109/PES.2011.6039809.

  55. Olowu, T.O., Dharmasena, S., Hernandez, A., Sarwat, A.: Impact analysis of cyber attacks on smart grid: a review and case study. In: Tyagi, H., Chakraborty, P.R., Powar, S., Agarwal, A.K. (eds.) New Research Directions in Solar Energy Technologies in Energy, Environment, and Sustainability, pp. 31–51. Springer, Singapore (2021)

    Google Scholar 

  56. Mohammadpourfard, M., et al. An accurate false data injection attack (FDIA) detection in renewable-rich power grids. In: 2022 10th Workshop on Modelling and Simulation of Cyber-Physical Energy Systems (MSCPES), pp. 1–5 (2022). https://doi.org/10.1109/MSCPES55116.2022.9770151.

  57. Isozaki, Y., et al.: Detection of cyber attacks against voltage control in distribution power grids with PVs. IEEE Trans. Smart Grid 7(4), 1824–1835 (2016). https://doi.org/10.1109/TSG.2015.2427380

    Article  Google Scholar 

  58. Radoglou-Grammatikis, P. et al. False data injection attacks against low voltage distribution systems. In: GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pp. 1856–1861 (2022). https://doi.org/10.1109/GLOBECOM48099.2022.10000880

  59. Ahmadi, A., Nabipour, M., Taheri, S., Mohammadi-Ivatloo, B., Vahidinasab, V.: A new false data injection attack detection model for cyberattack resilient energy forecasting. IEEE Trans. Industr. Inf. 19(1), 371–381 (2023). https://doi.org/10.1109/TII.2022.3151748

    Article  Google Scholar 

  60. Zhao, P., Gu, C., Huo, D.: Coordinated risk mitigation strategy for integrated energy systems under cyber-attacks. IEEE Trans. Power Syst. 35(5), 4014–4025 (2020). https://doi.org/10.1109/TPWRS.2020.2986455

    Article  Google Scholar 

  61. Zhong, H., et al. A lightweight and secure data authentication scheme with privacy preservation for wireless sensor networks. In: 2016 International Conference on Networking and Network Applications (NaNA), pp. 210–217 (2016). https://doi.org/10.1109/NaNA.2016.85.

  62. Luo, W., Ma, W., Gao, Q.: A dynamic trust management system for wireless sensor networks. Secur. Commun. Netw. 9(7), 613–621 (2016). https://doi.org/10.1002/sec.1384

    Article  Google Scholar 

  63. Mohammadpourfard, M., Sami, A., Weng, Y.: Identification of false data injection attacks with considering the impact of wind generation and topology reconfigurations. IEEE Trans. Sustain. Energy 9(3), 1349–1364 (2018). https://doi.org/10.1109/TSTE.2017.2782090

    Article  Google Scholar 

  64. Wlazlo, P., et al.: Man-in-the-middle attacks and defence in a power system cyber-physical testbed. IET Cyber-Phys. Syst. Theory Appl. 6(3), 164–177 (2021). https://doi.org/10.1049/cps2.12014

    Article  Google Scholar 

  65. Yang, Y., et al. Man-in-the-middle attack test-bed investigating cyber-security vulnerabilities in smart grid SCADA systems, pp. 138–138 (2012). https://doi.org/10.1049/cp.2012.1831.

  66. Hadjidemetriou, L., et al. Demonstration of man in the middle attack on a feeder power factor correction unit. In 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), pp. 126–130 (2020). https://doi.org/10.1109/ISGT-Europe47291.2020.9248779.

  67. Tertytchny, G., et al. Demonstration of man in the middle attack on a commercial photovoltaic inverter providing ancillary services. In: 2020 IEEE CyberPELS (CyberPELS), pp. 1–7 (2020). https://doi.org/10.1109/CyberPELS49534.2020.9311531.

  68. Youssef, T.A., et al. IEC 61850: Technology standards and cyber-threats. In: 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), pp. 1–6 (2016). https://doi.org/10.1109/EEEIC.2016.7555647

  69. Wara, M.S., Yu, Q. New replay attacks on ZigBee devices for Internet-of-Things (IoT) applications. In: 2020 IEEE International Conference on Embedded Software and Systems (ICESS), pp. 1–6 (2020). https://doi.org/10.1109/ICESS49830.2020.9301593

  70. Pavithra, L., Rekha, D.: Prevention of replay attack for isolated smart grid. In: Deshpande, P., Abraham, A., Iyer, B., Ma, K. (eds.) Next Generation Information Processing System, Advances in Intelligent Systems and Computing, pp. 251–258. Springer, Singapore (2021)

    Google Scholar 

  71. Yeom, J.-C., Zhou, Q., Song, I.-A., Lee, Y.-S., Ra, I.: Authentication mechanism for IoT device in micro grid environments. In: Peng, H., Deng, C., Wu, Z., Liu, Y. (eds.) Computational Intelligence and Intelligent Systems, in Communications in Computer and Information Science, pp. 281–291. Springer, Singapore (2019)

    Google Scholar 

  72. Resilient Control Design Based on a Sampled-Data Model for a Class of Networked Control Systems Under Denial-of-Service Attacks | IEEE J. Magaz.| IEEE Xplore. Accessed 04 Feb 2023 from https://ieeexplore.ieee.org/abstract/document/8933052

  73. Liang, L., Zheng, K., Sheng, Q., Wang, W., Fu, R., Huang, X.: A denial of service attack method for IoT system in photovoltaic energy system. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) Network and System Security. Lecture Notes in Computer Science, pp. 613–622. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  74. Ding, D., Savi, M., Pederzolli, F., Campanella, M., Siracusa, D.: In-network volumetric DDoS victim identification using programmable commodity switches. IEEE Trans. Netw. Serv. Manage. 18(2), 1191–1202 (2021). https://doi.org/10.1109/TNSM.2021.3073597

    Article  Google Scholar 

  75. Dimolianis, M., et al. SYN flood attack detection and mitigation using machine learning traffic classification and programmable data plane filtering. In: 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pp. 126–133 (2021). https://doi.org/10.1109/ICIN51074.2021.9385540.

  76. Bhosale, K.S., et al. The distributed denial of service attacks (DDoS) prevention mechanisms on application layer. In: 2017 13th International Conference on Advanced Technologies, Systems and Services in Telecommunications (℡SIKS), pp. 136–139 (2017). https://doi.org/10.1109/℡SKS.2017.8246247.

  77. Zhong, X., Jayawardene, I., Venayagamoorthy, G.K., Brooks, R.: Denial of service attack on tie-line bias control in a power system with PV plant. IEEE Trans. Emerg. Topics Comput. Intell. 1(5), 375–390 (2017). https://doi.org/10.1109/TETCI.2017.2739838

    Article  Google Scholar 

  78. Kang, B., et al. Investigating cyber-physical attacks against IEC 61850 photovoltaic inverter installations. In: 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1–8 (2015). https://doi.org/10.1109/ETFA.2015.7301457.

  79. Fu, R., Huang, X., Sun, J., Zhou, Z., Chen, D., Wu, Y.: Stability analysis of the cyber physical microgrid system under the intermittent DoS attacks. Energies (2017). https://doi.org/10.3390/en10050680

    Article  Google Scholar 

  80. Wang, Y., et al.: An optimal DoS attack strategy disturbing the distributed economic dispatch of microgrid. Complexity (2021). https://doi.org/10.1155/2021/5539829

    Article  Google Scholar 

  81. Liu, J., Lu, X., Wang, J.: Resilience analysis of DC microgrids under denial of service threats. IEEE Trans. Power Syst. 34(4), 3199–3208 (2019). https://doi.org/10.1109/TPWRS.2019.2897499

    Article  Google Scholar 

  82. Chavez, A., et al.: Hybrid intrusion detection system design for distributed energy resource systems. IEEE CyberPELS (2019). https://doi.org/10.1109/CyberPELS.2019.8925064

    Article  Google Scholar 

  83. Islam, S.N., Baig, Z., Zeadally, S.: Physical layer security for the smart grid: vulnerabilities, threats, and countermeasures. IEEE Trans. Industr. Inf. 15(12), 6522–6530 (2019). https://doi.org/10.1109/TII.2019.2931436

    Article  Google Scholar 

  84. Hueros-Barrios, P.J., et al. Addressing cybersecurity threats in prosumer-based nanogrids with MQTT communication. In: 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), pp. 1–6 (2022). https://doi.org/10.1109/ICECET55527.2022.9872918.

  85. Ishchenko, D., Nuqui, R. Secure communication of intelligent electronic devices in digital substations. In: 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), pp. 1–5 (2018). https://doi.org/10.1109/TDC.2018.8440438

  86. Ustun, T.S., Farooq, S.M., Hussain, S.M.S.: A novel approach for mitigation of replay and masquerade attacks in smartgrids using IEC 61850 standard. IEEE Access 7, 156044–156053 (2019). https://doi.org/10.1109/ACCESS.2019.2948117

    Article  Google Scholar 

  87. Higgins, M., Xu, W., Teng, F., Parisini, T.: Cyber–physical risk assessment for false data injection attacks considering moving target defences. Int. J. Inf. Secur. (2022). https://doi.org/10.1007/s10207-022-00621-7

    Article  Google Scholar 

  88. Sullivan, J.E., Kamensky, D.: How cyber-attacks in Ukraine show the vulnerability of the U.S. power grid. Electr. J. 30(3), 30–35 (2017). https://doi.org/10.1016/j.tej.2017.02.006

    Article  Google Scholar 

  89. I.-C. Alert. Cyber-attack against ukrainian critical infrastructure. In: Cybersecurity Infrastruct. Secur. Agency, Washington, DC, USA, Tech. Rep. ICS Alert (IR-ALERT-H-16–056–01), (2016)

  90. Zetter, K., et al.: Inside the cunning, unprecedented hack of Ukraine’s power grid. Wired 9, 1–5 (2016)

    Google Scholar 

  91. Ukraine power cut ‘was cyber-attack. BBC News, (2017). Accessed 04 Feb 2023 from https://www.bbc.com/news/technology-38573074 (Online)

  92. CRASHOVERRIDE: Analyzing the Malware that Attacks Power Grids | Dragos. (2017). Accessed 04 Feb 2023 from https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/

  93. Learned, L.: Risks posed by firewall firmware vulnerabilities. North American Electric Reliability Corporation (2019)

    Google Scholar 

  94. Satellite cyber attack paralyzes 11GW of German wind turbines. In PV magazine International, (2022). Accessed 04 Feb 2023. https://www.pv-magazine.com/2022/03/01/satellite-cyber-attack-paralyzes-11gw-of-german-wind-turbines/

  95. Cyber attack of the Sandworm group (UAC-0082) on energy facilities of Ukraine using malware INDUSTROYER2 and CADDYWIPER (CERT-UA#4435). cert.gov.ua. Accessed 04 Feb 2023 from https://cert.gov.ua/

  96. Industroyer2 malware targeting Ukrainian energy company. Accessed 04 Feb 2023 from https://www.ironnet.com/blog/industroyer2-malware-targeting-ukrainian-energy-company

  97. IT malfunction at enercity. Accessed 04 Feb 2023 from https://www.enercity.de/presse/betrieb-und-baustellen/2022/it-stoerung

  98. Hussain, S.M.S., Ustun, T.S., Kalam, A.: A review of IEC 62351 security mechanisms for IEC 61850 message exchanges. IEEE Trans. Industr. Inf. 16(9), 5643–5654 (2020). https://doi.org/10.1109/TII.2019.2956734

    Article  Google Scholar 

  99. Johnson, J. Roadmap for photovoltaic cyber security. SAND2017-13262, 1782667, 668568, (2017). https://doi.org/10.2172/1782667

  100. Shanmugapriya, D., et al.: MQTT protocol use cases in the internet of things. In: Srirama, S.N., Lin, J.C.-W., Bhatnagar, R., Agarwal, S., Reddy, P.K. (eds.) Big Data Analytics. Lecture Notes in Computer Science, pp. 146–162. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  101. Chlela, M., et al. Impact of cyber-attacks on islanded microgrid operation. In: Proceedings of the Workshop on Communications, Computation and Control for Resilient Smart Energy Systems, in RSES ’16. New York, NY, USA: Association for Computing Machinery (2016), pp. 1–5. https://doi.org/10.1145/2939940.2939943

  102. DOE Releases Plan for Improving Cybersecurity in Renewable Energy, Manufacturing, Buildings, and Transportation Research and Development. Energy.gov. Accessed 04 Feb 2023 from https://www.energy.gov/eere/articles/doe-releases-plan-improving-cybersecurity-renewable-energy-manufacturing-buildings

  103. Engel, J. Renewables lag in cyber safeguards: Here’s how the sector plans to catch up. Renewable Energy World (2022). Accessed 04 Feb 2023 from https://www.renewableenergyworld.com/om/renewables-lag-in-cyber-safeguards-heres-how-the-sector-plans-to-catch-up/

  104. Grammatikis, P.R., et al.: SDN-based resilient smart grid: the SDN-microSENSE ARCHITECTURE. Digital (2021). https://doi.org/10.3390/digital1040013

    Article  Google Scholar 

  105. Radoglou Grammatikis, P., Sarigiannidis, P. Secure and Private Smart Grid: The SPEAR Project. vol. 10, (2021). https://doi.org/10.54050/PRJ10014017

  106. Grammatikis, P.R. et al. Secure and Private Smart Grid: The SPEAR Architecture. In: 2020 6th IEEE Conference on Network Softwarization (NetSoft), (2020), pp. 450–456. https://doi.org/10.1109/NetSoft48620.2020.9165420

  107. Radoglou-Grammatikis, P., et al.: SPEAR SIEM: a security information and event management system for the smart grid. Comput Netw (2021). https://doi.org/10.1016/j.comnet.2021.108008

    Article  Google Scholar 

  108. Wang, K., Du, M., Maharjan, S., Sun, Y.: Strategic honeypot game model for distributed denial of service attacks in the smart grid. IEEE Transactions on Smart Grid 8(5), 2474–2482 (2017). https://doi.org/10.1109/TSG.2017.2670144

    Article  Google Scholar 

  109. Otilia, B., Anna, G. Integrated Cybersecurity Solution for the Vulnerability Assessment, Monitoring and Protection of Critical Energy Infrastructures, (2019). [Online]. Available: https://energy-shield.eu/wp-content/uploads/2020/08/sister-projects_workshop_EnergyShield.pdf

  110. Georgiadou, A., et al.: A security awareness and competency evaluation in the energy sector. Comput. Secur. (2023). https://doi.org/10.1016/j.cose.2023.103199

    Article  Google Scholar 

  111. Omitaomu, O.A., Niu, H.: Artificial intelligence techniques in smart grid: a survey. Smart Cities (2021). https://doi.org/10.3390/smartcities4020029

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AR and DTC contributed to conceptualization; AR and ET contributed to methodology, resources, and writing—original draft preparation; AR, ET, and RA contributed to investigation; and AR, DTC, TCB, and PAC contributed to writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Alexandre Rekeraho.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rekeraho, A., Cotfas, D.T., Cotfas, P.A. et al. Cybersecurity challenges in IoT-based smart renewable energy. Int. J. Inf. Secur. 23, 101–117 (2024). https://doi.org/10.1007/s10207-023-00732-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00732-9

Keywords

Navigation