Skip to main content
Log in

Does surplus/deficit sharing increase risk-taking in a corporate defined benefit pension plan?

  • Published:
Decisions in Economics and Finance Aims and scope Submit manuscript

Abstract

This paper studies the surplus-/deficit-sharing effects on the risk-taking of a corporate defined benefit pension plan. Our analytical results show that when a surplus-/deficit-sharing rule is introduced, the participants’ risk-taking increases, while the direction of the surplus-/deficit-sharing effect on the equityholders’ risk-taking is ambiguous. The numerical analysis reveals that for plausible parameter values, the equityholders’ risk-taking increases due to the introduction of surplus/deficit sharing. The participants’ risk-taking increases much more substantially than the equityholders’ risk-taking when introducing surplus/deficit sharing. The participants’ risk-taking is more sensitive to the level of funding than the equityholders’ risk-taking: The participants’ risk-taking can become extremely high for low funding levels. This high sensitivity of the participants’ risk-taking to low funding levels is reduced by introducing deficit sharing. Risk-taking is independent of the funding level when the surplus and deficit proportions are equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Platanakis and Sutcliffe (2016) quantify the gross wealth effects of this rule change, while Platanakis and Sutcliffe (2018) focus on the net wealth effects.

  2. See Broeders and Chen (2013) for a list of pension guarantee funds with their intervention policies by country.

  3. Kalra and Jain (1997) and Sundaresan and Zapatero (1997) propose a comparable definition, but a weighted mean of wages is used instead of the final wage.

  4. Campbell and Viceira (2002) propose a one state variable version of dynamics (7), (8) and (10). Lioui and Poncet (2003) have dynamics (7) and (10). Rudolf and Ziemba (2004) propose dynamics (9) and a geometric Brownian motion (GBM) version of dynamics (10).

  5. See, for instance, Brennan and Xia (2000), Bodie et al. (1992), Chacko and Viceira (2005), Brennan et al. (1997), Brennan and Xia (2002) and Rudolf and Ziemba (2004), respectively.

  6. We chose to take the values of the three main parameters from one paper for the sake of consistency.

    There is support for the chosen levels in the literature. Pennacchi and Lewis (1994) estimate \(\sigma _{A}=0.18\). Ang et al. (2013) choose \(\sigma _{L}=0.1\). \(\rho _{AL}=0.11\) is the 3-year correlation found by Lucas and Zeldes (2006).

    Of course, some papers opt for different values, but they do not fundamentally contradict Kalra and Jain’ (1997) choice. \(\sigma _{A\text { }}\) is closer to 0.1 following the Employee Benefits Security Administration (2013) and Ang et al. (2013). \(\sigma _{L}\) is 0.085 for Hsieh et al. (1994). \(\rho _{AL}\) is 0.2 for Hsieh et al. (1994) and 0.35 for Ang et al. (2013).

  7. The chosen value is also compatible with Brennan (1998), for instance.

    Brennan (1998) and Xia (2001) work with CRRA utility. Their risk aversion coefficient can serve as a benchmark in our CARA analysis because the asset value has been normalized to 1.

  8. As noted before, the sustainability cuts practice in the Netherlands seems to be leading to rather marginal benefits decreases.

References

  • Ang, A., Chen, B., Sundaresan, S.: Liability driven investment with downside risk. J. Portf. Manag. 40(1), 71–87 (2013)

    Article  Google Scholar 

  • Black, F.: Should you use stocks to hedge your pension liability? Financ. Anal. J. 45(1), 10–12 (1989)

    Google Scholar 

  • Blake, D.: Pension schemes as options on pension fund assets: implications for pension fund management. Insur. Math. Econ. 23, 263–286 (1998)

    Article  Google Scholar 

  • Bodie, Z.: The ABO, the PBO, and pension investment policy. Financ. Anal. J. 41, 10–16 (1990)

    Article  Google Scholar 

  • Bodie, Z., Merton, R.C., Samuelson, W.F.: Labor supply flexibility and portfolio choice in a life cycle model. J. Econ. Dyn. Control 16, 427–449 (1992)

    Article  Google Scholar 

  • Brennan, M.J.: The role of learning in dynamic portfolio decisions. Eur. Finance Rev. 1(3), 295–306 (1998)

    Article  Google Scholar 

  • Brennan, M.J., Xia, Y.: Stochastic interest rates and the bond-stock mix. Eur. Finance Rev. 4, 197–210 (2000)

    Article  Google Scholar 

  • Brennan, M.J., Xia, Y.: Dynamic asset allocation under inflation. J. Finance 57(3), 1201–1238 (2002)

    Article  Google Scholar 

  • Brennan, M.J., Schwartz, E.S., Lagnado, R.: Strategic asset allocation. J. Econ. Dyn. Control 21, 1377–1403 (1997)

    Article  Google Scholar 

  • Broeders, D., Chen, A.: Pension benefit security: a comparison of solvency requirements, a pension guarantee fund, and sponsor support. J. Risk Insur. 80(2), 239–272 (2013)

    Article  Google Scholar 

  • Bulow, J.I., Scholes, M.S.: Who owns the assets in a defined-benefit pension plan? In: Bodie, Z., Shoven, J. (eds.) Financial Aspects of the United States Pension System, pp. 17–36. University of Chicago Press, Chicago (1983)

    Google Scholar 

  • Campbell, J.Y., Viceira, L.M.: Strategic Asset Allocation: Portfolio Choice for Long-term Investors. Oxford University Press, Oxford (2002)

    Book  Google Scholar 

  • Carpenter, J.N.: Does option compensation increase managerial risk appetite? J. Finance 55(5), 2311–2331 (2000)

    Article  Google Scholar 

  • Chacko, G., Viceira, L.: Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets. Rev. Financ. Stud. 18(4), 1369–1402 (2005)

    Article  Google Scholar 

  • Chen, Z., Pelsser, A., Ponds, E.: Evaluating the UK and Dutch defined-benefit pension policies using the holistic balance sheet framework. Insur. Math. Econ. 58, 89–102 (2014)

    Article  Google Scholar 

  • Employee Benefits Security Administration: Private Pension Plan Bulletin Historical Tables and Graphs, U.S Department of Labor (2013)

  • Gerrard, R., Haberman, S., Vigna, E.: Optimal investment choices post-retirement in a defined contribution pension scheme. Insur. Math. Econ. 35, 321–342 (2004)

    Article  Google Scholar 

  • Hsieh, S.-J., Chen, A.H., Ferris, K.R.: The valuation of PBGC insurance premiums using an option pricing model. J. Financ. Quant. Anal. 29(1), 89–99 (1994)

    Article  Google Scholar 

  • Jin, L., Merton, R.C., Bodie, Z.: Do a firm’s equity returns reflect the risk of its pension plan? J. Financ. Econ. 81(1), 1–26 (2006)

    Article  Google Scholar 

  • Kalra, R., Jain, G.: A continuous-time model to determine the intervention policy for PBGC. J. Bank. Finance 21, 1159–1177 (1997)

    Article  Google Scholar 

  • Karatzas, I., Lehoczky, J., Sethi, S., Shreve, S.: Explicit solution of a general consumption/investment problem. Math. Oper. Res. 11(2), 261–294 (1986)

    Article  Google Scholar 

  • Lioui, A., Poncet, P.: Dynamic asset pricing with non-redundant forwards. J. Econ. Dyn. Control 27, 1163–1180 (2003)

    Article  Google Scholar 

  • Love, D.A., Smith, P.A., Wilcox, D.W.: The effect of regulation on optimal corporate pension risk. J. Financ. Econ. 101(1), 18–35 (2011)

    Article  Google Scholar 

  • Lucas, D., Zeldes, S.P.: Valuing and hedging defined benefit pension obligations—the role of stocks revisited. Columbia University working paper (2006)

  • Margrabe, W.: The value of an option to exchange one asset for another. J. Finance 33(1), 177–186 (1978)

    Article  Google Scholar 

  • McCarthy, D., Miles, D.: Optimal portfolio allocation for corporate pension funds. Eur. Financ. Manag. 19(3), 599–629 (2013)

    Article  Google Scholar 

  • Merton, R.C.: Continuous-Time Finance. Blackwell, Cambridge (1990)

    Google Scholar 

  • Pennacchi, G.G., Lewis, C.M.: The value of Pension Benefit Guarantee Corporation insurance. J. Money Credit Bank. 26(3), 735–753 (1994)

    Article  Google Scholar 

  • Platanakis, E., Sutcliffe, C.: Pension scheme redesign and wealth redistribution between the members and sponsor: the USS rule change in October 2011. Insur. Math. Econ. 69, 14–28 (2016)

    Article  Google Scholar 

  • Platanakis, E., Sutcliffe, C.: Pension schemes, taxation and stakeholder wealth: The USS rule changes. SSRN Working Paper. https://ssrn.com/abstract=3039364 (2018)

  • Rauh, J.: Risk shifting versus risk management: investment policy in corporate pension plans. Rev. Financ. Stud. 22(7), 2687–2733 (2009)

    Article  Google Scholar 

  • Romaniuk, K.: The optimal asset allocation of the main types of pension funds: a unified framework. Geneva Risk Insur. Rev. 32(2), 113–128 (2007)

    Article  Google Scholar 

  • Romaniuk, K.: The options embedded within pension plans: types, valuation principles and effects on optimal investment policies. Bank. Mark. Invest. 107, 56–66 (2010)

    Google Scholar 

  • Ross, S.A.: Compensation, incentives, and the duality of risk aversion and riskiness. J. Finance 59(1), 207–225 (2004)

    Article  Google Scholar 

  • Rudolf, M., Ziemba, W.T.: Intertemporal surplus management. J. Econ. Dyn. Control 28, 975–990 (2004)

    Article  Google Scholar 

  • Sundaresan, S., Zapatero, F.: Valuation, optimal asset allocation and retirement incentives of pension plans. Rev. Financ. Stud. 10(3), 631–660 (1997)

    Article  Google Scholar 

  • Xia, Y.: Learning about predictability: the effects of parameter uncertainty on dynamic asset allocation. J. Finance 56(1), 205–246 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

I wish to thank the Editors and two anonymous referees for helpful analyses that substantially improved the quality of the paper. All remaining errors are mine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Romaniuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of the speculative fund with program (2)

With optimization program (2), the utility function argument, denoted by X, is defined by:

$$\begin{aligned} X\equiv A-L \end{aligned}$$
(21)

One differentiates Eq. (21) and divides by X. The following is obtained:

$$\begin{aligned} \frac{\hbox {d}X}{X}=\frac{A}{X}\frac{\hbox {d}A}{A}-\frac{L}{X}\frac{\hbox {d}L}{L} \end{aligned}$$
(22)

Let us derive the A dynamics. One introduces the S and \(\eta \) dynamics, as given by Eqs. (7) and (8), respectively, in Eq. (6), and takes account of the relationship \(x_{S}+x_{\eta }=1\). One obtains:

$$\begin{aligned} \frac{\hbox {d}A}{A}=\left( x_{S}\left( \mu _{S}-r\right) +r\right) \hbox {d}t+x_{S}\sigma _{S}\hbox {d}W^{S} \end{aligned}$$
(23)

Replacing the A and L dynamics, as given by Eqs. (23) and (9), respectively, in Eq. (22), yields:

$$\begin{aligned} \frac{\hbox {d}X}{X}= & {} \left[ \frac{A}{X}\left( x_{S}\left( \mu _{S}-r\right) +r\right) -\frac{L}{X}\mu _{L}\right] \hbox {d}t \nonumber \\&+\,\frac{A}{X}x_{S}\sigma _{S}\hbox {d}W^{S}-\frac{L}{X}\sigma _{L}\hbox {d}W^{L} \end{aligned}$$
(24)

Let the indirect utility function J be defined as:

$$\begin{aligned} J(X(t),K(t),t)\equiv \max _{x_{S}}E_{t}\left[ U(X(T))\right] \end{aligned}$$
(25)

with J increasing, strictly concave in X, once differentiable with respect to t and twice differentiable with respect to X and K.

The Hamilton–Jacobi–Bellman optimality condition is:

$$\begin{aligned} 0=\max _{x_{S}}DJ(X(t),K(t),t) \end{aligned}$$
(26)

where D denotes the Dynkin operator.

The Dynkin of J is defined by:

$$\begin{aligned} DJ= & {} J_{t}+J_{X}X\mu _{X}+\frac{1}{2}J_{XX}X^{2}\sigma _{X}^{2} \nonumber \\&+\,\mathop \sum \limits _{i}J_{K_{i}}K_{i}\mu _{K_{i}}+\frac{1}{2}\mathop \sum \limits _{i} \mathop \sum \limits _{j}J_{K_{i}K_{j}}K_{i}K_{j}\sigma _{K_{i}K_{j}} \nonumber \\&+\,\mathop \sum \limits _{i}J_{XK_{i}}XK_{i}\sigma _{XK_{i}} \end{aligned}$$
(27)

The subscripts on J denote partial derivatives. \(\sigma _{kl}\) stands for the covariance between any variables k and l. The variable X dynamics is written under its general form \(\frac{\hbox {d}X}{X}=\mu _{X}\hbox {d}t+\sigma _{X}\hbox {d}W^{X}\) .

One replaces the parameters of the X dynamics, as given by Eq. (24), in Eq. (27), and derives with respect to \(x_{S}\) to obtain the speculative fund shown in Table 1.

Appendix B: Proof of the speculative fund with program (3)

With optimization program (3), the utility function argument, denoted by Y, is defined by:

$$\begin{aligned} Y\equiv \beta A+(1-\beta )L+(\alpha -\beta )C \end{aligned}$$
(28)

One differentiates Eq. (28) and divides by Y. One obtains:

$$\begin{aligned} \frac{\hbox {d}Y}{Y}=\frac{\beta A}{Y}\frac{\hbox {d}A}{A}+\frac{(1-\beta )L}{Y}\frac{\hbox {d}L}{L}+ \frac{(\alpha -\beta )}{Y}\hbox {d}C \end{aligned}$$
(29)

Let us derive the dynamics of the call C. One applies Ito’s lemma to the function \(C(t,A,L,K_{1},K_{2},\ldots ,K_{N})\). This yields:

$$\begin{aligned} \hbox {d}C= & {} C_{t}\hbox {d}t+C_{A}\hbox {d}A+C_{L}\hbox {d}L+\sum _{i}C_{K_{i}}\hbox {d}K_{i} \nonumber \\&+\,\frac{1}{2}C_{AA}\hbox {d}A\hbox {d}A+\frac{1}{2}C_{LL}\hbox {d}L\hbox {d}L+\frac{1}{2} \sum _{i}\sum _{j}C_{K_{i}K_{j}}\hbox {d}K_{i}\hbox {d}K_{j} \nonumber \\&+\,C_{AL}\hbox {d}A\hbox {d}L+\sum _{i}C_{AK_{i}}\hbox {d}A\hbox {d}K_{i}+\sum _{i}C_{LK_{i}}\hbox {d}L\hbox {d}K_{i} \end{aligned}$$
(30)

where subscripts on C denote partial derivatives.

One replaces the A, L and \(K_{i}\) dynamics, as given by Eqs. (23), (9) and (10), respectively in Eq. (30). The obtained C dynamics are replaced in Eq. (29). The following Y dynamics is obtained:

$$\begin{aligned} \frac{\hbox {d}Y}{Y}= & {} \frac{\beta A}{Y}\left[ \left( x_{S}\left( \mu _{S}-r\right) +r\right) \hbox {d}t+x_{S}\sigma _{S}\hbox {d}W^{S}\right] \nonumber \\&+\,\frac{(1-\beta )L}{Y}\left[ \mu _{L}\hbox {d}t+\sigma _{L}\hbox {d}W^{L}\right] \nonumber \\&+\,\frac{(\alpha -\beta )}{Y}\left[ \begin{array}{c} \left[ \begin{array}{c} C_{t}+C_{A}A\left( x_{S}\left( \mu _{S}-r\right) +r\right) +C_{L}L\mu _{L}+\sum _{i}C_{K_{i}}K_{i}\mu _{K_{i}} \\ +\frac{1}{2}C_{AA}\left( Ax_{S}\sigma _{S}\right) ^{2}+\frac{1}{2} C_{LL}\left( L\sigma _{L}\right) ^{2}+\frac{1}{2}\sum _{i} \sum _{j}C_{K_{i}K_{j}}K_{i}K_{j}\sigma _{K_{i}K_{j}} \\ +C_{AL}ALx_{S}\sigma _{SL}+\sum _{i}C_{AK_{i}}AK_{i}x_{S}\sigma _{SK_{i}}+\sum _{i}C_{LK_{i}}LK_{i}\sigma _{LK_{i}} \end{array} \right] \hbox {d}t \\ +C_{A}Ax_{S}\sigma _{S}\hbox {d}W^{S}+C_{L}L\sigma _{L}\hbox {d}W^{L}+\sum _{i}C_{K_{i}}K_{i}\sigma _{K_{i}}\hbox {d}W^{K_{i}} \end{array} \right] \nonumber \\ \end{aligned}$$
(31)

The indirect utility function J, the optimality condition and the Dynkin of J are as defined when deriving the speculative fund for program (2), except that X is replaced with Y in Eqs. (25), (26) and (27), respectively.

One replaces the parameters of the Y dynamics, as defined by Eq. (31), in the Dynkin of J, and derives with respect to \( x_{S} \). This yields the speculative fund shown in Table 1.

Appendix C: Proof of the speculative fund with program (4)

With optimization program (4), the utility function argument, denoted by Z, is defined by:

$$\begin{aligned} Z\equiv \left( 1-\beta \right) (A-L)+(\beta -\alpha )C \end{aligned}$$
(32)

Differentiating Eq. (32) and dividing by Z, one obtains:

$$\begin{aligned} \frac{\hbox {d}Z}{Z}=\frac{\left( 1-\beta \right) A}{Z}\frac{\hbox {d}A}{A}-\frac{(1-\beta )L }{Z}\frac{\hbox {d}L}{L}+\frac{(\beta -\alpha )}{Z}\hbox {d}C \end{aligned}$$
(33)

One replaces the dynamics of A, L and C, as given by Eqs. (23), (9) and (30) respectively, in Eq. (33). This yields:

$$\begin{aligned} \frac{\hbox {d}Z}{Z}= & {} \frac{\left( 1-\beta \right) A}{Z}\left( \left( x_{S}\left( \mu _{S}-r\right) +r\right) \hbox {d}t+x_{S}\sigma _{S}\hbox {d}W^{S}\right) \nonumber \\&-\,\frac{(1-\beta )L}{Z}\left[ \mu _{L}\hbox {d}t+\sigma _{L}\hbox {d}W^{L}\right] \nonumber \\&+\,\frac{(\beta -\alpha )}{Z}\left[ \begin{array}{c} \left[ \begin{array}{c} C_{t}+C_{A}A\left( x_{S}\left( \mu _{S}-r\right) +r\right) +C_{L}L\mu _{L}+\sum _{i}C_{K_{i}}K_{i}\mu _{K_{i}} \\ +\frac{1}{2}C_{AA}\left( Ax_{S}\sigma _{S}\right) ^{2}+\frac{1}{2} C_{LL}\left( L\sigma _{L}\right) ^{2}+\frac{1}{2}\sum _{i} \sum _{j}C_{K_{i}K_{j}}K_{i}K_{j}\sigma _{K_{i}K_{j}} \\ +C_{AL}ALx_{S}\sigma _{SL}+\sum _{i}C_{AK_{i}}AK_{i}x_{S}\sigma _{SK_{i}}+\sum _{i}C_{LK_{i}}LK_{i}\sigma _{LK_{i}} \end{array} \right] \hbox {d}t \\ +C_{A}Ax_{S}\sigma _{S}dW^{S}+C_{L}L\sigma _{L}dW^{L}+\sum _{i}C_{K_{i}}K_{i}\sigma _{K_{i}}dW^{K_{i}} \end{array} \right] \nonumber \\ \end{aligned}$$
(34)

Applying the method described above, one obtains the speculative fund shown in Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romaniuk, K. Does surplus/deficit sharing increase risk-taking in a corporate defined benefit pension plan?. Decisions Econ Finan 43, 229–249 (2020). https://doi.org/10.1007/s10203-019-00252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10203-019-00252-z

Keywords

JEL Classification

Navigation