Skip to main content
Log in

Small-sample one-sided testing in extreme value regression models

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

We derive adjusted signed likelihood ratio statistics for a general class of extreme value regression models. The adjustments reduce the error in the standard normal approximation to the distribution of the signed likelihood ratio statistic. We use Monte Carlo simulations to compare the finite-sample performance of the different tests. Our simulations suggest that the signed likelihood ratio test tends to be liberal when the sample size is not large and that the adjustments are effective in shrinking the size distortion. Two real data applications are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. CR23X data: http://niwot.colorado.edu/exec/.extracttoolA?d-1cr23x.ml.

  2. The data set is available at http://www.stat.ncsu.edu/working_groups/sas/sicl/data/olympic.dat.

References

  • Barndorff-Nielsen, O.E.: Inference on full or partial parameters, based on the standardized signed log likelihood ratio. Biometrika 73, 307–322 (1986)

    MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O.E.: Modified signed log likelihood ratio. Biometrika 78, 557–563 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto-Souza, W., Vasconcellos, K.L.P.: Bias and skewness in a general extreme value regression model. Comput. Stat. Data Anal. 55(3), 1379–1393 (2011)

    Article  MathSciNet  Google Scholar 

  • Beirlant, J., Goegebeur, Y., Segers, J., Teugels, J.: Statistics of Extremes: Theory and Applications. Wiley, Chichester (2004)

    Book  Google Scholar 

  • Castillo, E., Hadi, A.S., Balakrishnan, N., Sarabia, J.M.: Extreme Value and Related Models with Applications in Engineering and Science. Wiley, New Jersey (2005)

    MATH  Google Scholar 

  • Coles, S.: An Introduction to Statistical Modeling of Extremes. Springer, London (2001)

    Book  Google Scholar 

  • Cortese, G., Ventura, L.: Accurate higher-order likelihood inference on \(P(Y < X)\). Comput. Stat. 28, 1035–1059 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D.R., Reid, N.: Parameter orthogonality and approximate conditional inference. J. R. Stat. Soc. B 40, 1–39 (1987)

    MathSciNet  Google Scholar 

  • de Haan, L.: On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Mathematical Centre Tracts 32. Mathematics Centre, Amsterdam (1970)

  • DiCiccio, T.J., Martin, M.A.: Simple modifications for signed roots of likelihood ratio statistics. J. R. Stat. Soc. B 55, 305–316 (1993)

    MathSciNet  MATH  Google Scholar 

  • Doornik, J.A.: An Object-Oriented Matrix Language—Ox 6. Timberlake Consultants Press, London (2009)

    Google Scholar 

  • Ferrari, S.L.P., Pinheiro, E.C.: Small-sample likelihood inference in extreme-value regression models. J. Stat. Comput. Simul. 84(3), 582–595 (2012)

    Article  MathSciNet  Google Scholar 

  • Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 24(2), pp. 180–190. Cambridge University Press, Cambridge (1928)

  • Fraser, D.A.S., Reid, N., Wu, J.: A simple general formula for tail probabilities for frequentist and bayesian inference. Biometrika 86, 249–264 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Fréchet, M.: Sur la loi de probabilité de l’écart maximum. Ann. Soc. Polon. Math Cracovie 6(32), 93–116 (1927)

    Google Scholar 

  • Gnedenko, B.: Sur la distribution limite du terme maximum d’une série aléatoire. Annals of Mathematics 44, 423–453 (1992). In: Kotz, S., Johnson, N.L. (eds) Breakthroughs in Statistics, vol. I. Springer, Berlin, pp. 195–225 (1943)

  • Gumbel, E.J.: Statistics of Extremes, 2nd edn. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  • Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., Ostrowsky, E.: A Handbook of Small Data Sets, 2nd edn. Chapman & Hall, London (1996)

    Google Scholar 

  • Kotz, S., Nadajarah, S.: Extreme Value Distributions: Theory and Applications. Imperial College Press, London (2000)

    Book  Google Scholar 

  • Larsen, P.V., Blæsild, P., Sørensen, M.K.: Improved likelihood ratio tests on the von Mises–Fisher distribution. Biometrika 89, 947–951 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Lawless, J.F.: Statistical Models and Methods for Lifetime Data, 2nd edn. Wiley, New Jersey (2003)

    MATH  Google Scholar 

  • Melo, T.F., Ferrari, S.L.P.: A modified signed likelihood ratio test in elliptical structural models. Adv. Stat. Anal. 94(1), 75–87 (2010)

    Article  MathSciNet  Google Scholar 

  • Mueller, S., Rufibach, K.: Smooth tail index estimation. J. Stat. Comput. Simul. 79, 1155–1167 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Press, W.H., Teulosky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Prentice Hall, London (1992)

    Google Scholar 

  • Severini, T.A.: An empirical adjustment to the likelihood ratio statistic. Biometrika 86, 235–247 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Severini, T.A.: Likelihood Methods in Statistics. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  • Skovgaard, I.M.: An explicit large-deviance approximation to one-parameter tests. Bernoulli 2, 145–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Skovgaard, I.M.: Likelihood asymptotics. Scand. J. Stat. 28, 3–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Wong, A.C.M., Wu, J.: Practical small-sample asymptotics for distributions used in life-data analysis. Technometrics 42, 149–155 (2000)

    Article  Google Scholar 

  • Wong, A.C.M., Wu, J.: Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models. J. Stat. Plan. Inference 104, 73–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support from the Brazilian agencies CNPq, CAPES, and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia L. P. Ferrari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 123 KB)

Appendix

Appendix

Let \(v\) be a vector, and \(v_{(r)}\) be the vector \(v\) without its \(r\)th component. Analogously, let \(\mathcal {V}\) be a matrix and \(\mathcal {V}_{(r)}\) be the matrix \(\mathcal {V}\) without the \(r\)th column. Assume that \(\nu =\beta _r\) is the parameter of interest. The Fisher information matrix (see Ferrari and Pinheiro 2012) can be written as

$$\begin{aligned} I(\theta )=I(\beta _r,\theta _{(r)})=I(\beta _r,\beta _{(r)},\gamma )= \begin{pmatrix} I_{\beta _r\beta _r} &{}\quad I_{\beta _r\beta _{(r)}} &{}\quad I_{\beta _r\gamma } \\ I_{\beta _{(r)}\beta _r} &{}\quad I_{\beta _{(r)}\beta _{(r)}} &{}\quad I_{\beta _{(r)}\gamma } \\ I_{\gamma \beta _r} &{}\quad I_{\gamma \beta _{(r)}} &{}\quad I_{\gamma \gamma } \\ \end{pmatrix}, \end{aligned}$$

where

$$\begin{aligned} \begin{array}{ll} I_{\beta _r\beta _r}={\mathbf {x}}_{\cdot r}^{\!\top }\Phi ^{-1}T^2\Phi ^{-1}{\mathbf {x}}_{\cdot r},&{}\quad I_{\beta _r\beta _{(r)}}\!=\!I_{\beta _{(r)}\beta _r}^{\!\top }={\mathbf {x}}_{\cdot r}^{\!\top }\Phi ^{-1}T^2\Phi ^{-1}X_{(r)},\\ I_{\beta _r\gamma }=I_{\gamma \beta _r}^{\!\top }=({\mathcal {E}}-1){\mathbf {x}}_r^{\!\top }\Phi ^{-1}TH\Phi ^{-1}Z, &{}\quad I_{\beta _{(r)}\beta _{(r)}}=X_{(r)}^{\!\top }\Phi ^{-1}T^2\Phi ^{-1}X_{(r)},\\ I_{\beta _{(r)}\gamma }=I_{\gamma \beta _{(r)}}^{\!\top }=({\mathcal {E}}-1)X_{(r)}^{\!\top }\Phi ^{-1}TH\Phi ^{-1}Z, &{}\quad I_{\gamma \gamma }=\bigl (1 + \Gamma ^{(2)}(2)\bigr )Z^{\!\top }\Phi ^{-1}H^2\Phi ^{-1}Z, \end{array} \end{aligned}$$

\({\mathbf {x}}_{\cdot r}=(x_{1r},\ldots ,x_{nr})^{\!\top }\) is the \(r\)th column of \(X\) and \(\Phi \), \(T\), \(H\), \(X\) and \(Z\) as defined above.

Consider a parameterization \(\vartheta =(\beta _r,\vartheta _{(r)})\), \(\vartheta _{(r)}=(\kappa ,\tau )\), where \(\vartheta \), \(\vartheta _{(r)}\), \(\kappa \) and \(\tau \) have dimensions \((k+m)\), \((k+m-1)\), \((k-1)\) and \(m\), respectively, in such a way that \(\beta _r\) is orthogonal to \(\vartheta _{(r)}\). Let

$$\begin{aligned} I_{\beta _r\theta _{(r)}}= \left( \begin{array}{ll} I_{\beta _r\beta _{(r)}}&I_{\beta _r\gamma } \end{array} \right) , \quad I_{\theta _{(r)}\theta _{(r)}}= \left( \begin{array}{ll} I_{\beta _{(r)}\beta _{(r)}} &{} I_{\beta _{(r)}\gamma }\\ I_{\gamma \beta _{(r)}} &{} I_{\gamma \gamma } \end{array}\right) , \quad I_{\theta _{(r)}\theta _{(r)}}^{-1}= \left( \begin{array}{ll} I^{\beta _{(r)}\beta _{(r)}} &{} I^{\beta _{(r)}\gamma }\\ I^{\gamma \beta _{(r)}} &{} I^{\gamma \gamma } \end{array} \right) . \end{aligned}$$

Define \( A \equiv I_{\beta _r\beta _{(r)}}I^{\beta _{(r)}\beta _{(r)}}+I_{\beta _r\gamma }I^{\gamma \beta _{(r)}}, \) \( B \equiv I_{\beta _r\beta _{(r)}}I^{\beta _{(r)}\gamma }+I_{\beta _r\gamma }I^{\gamma \gamma }, \) \(\beta _{(r)}=\kappa -\beta _rA^{\!\top }\) and \(\gamma =\tau -\beta _rB^{\!\top }\). From Cox and Reid (1987), it can be shown that \(\beta _r\) is orthogonal to \((\kappa , \tau )\).

In order to obtain \(R_0^*\), one should first re-write (4)–(6) in the orthogonal parameterization \(\vartheta =(\beta _r,\kappa , \tau )\), and define the systematic components \(\eta ^*(\vartheta )\) and \(\delta ^*(\vartheta )\). The derivative of the log-likelihood function with respect to the parameter of interest \(\beta _r\), \(\ell _{\beta _r}^*(\vartheta )\), the observed information matrix, \(J^*(\vartheta )\) and the element of the expected information matrix that corresponds to \(\beta _r\), \(I_{\beta _r\beta _r}^*(\vartheta )\), should then be computed in this parameterization as in Ferrari and Pinheiro (2012, p. 584), and inserted into (9).

Consider, for instance, the maximum extreme value model regression model (4) with location and dispersion sub-models \( g(\mu _t) = \eta _t = \eta (x_{t},\beta )=x_{t}^\top \beta \) and \( h(\sigma _t) = \delta _t = \delta (z_{t},\gamma )=z_{t}^\top \gamma . \) We have

$$\begin{aligned} g(\mu _t)= x_{tr}\beta _r+x_{t(r)}^\top \beta _{(r)}= x_{tr}\beta _r+x_{t(r)}^\top (\kappa -\beta _r A^{\!\top })= (x_{tr}-x_{t(r)}^\top A^{\!\top })\beta _r+x_{t(r)}^\top \kappa \equiv \eta ^*_t(\vartheta ) \end{aligned}$$
(13)

and

$$\begin{aligned} h(\sigma _t)= z_{t}^\top \tau -\beta _r z_{t}^\top B^{\!\top }\equiv \delta ^*_t(\vartheta ). \end{aligned}$$
(14)

For the reparameterized model (4) with (13)–(14), we have

$$\begin{aligned} \ell ^*_{\beta _r}(\vartheta )= & {} \frac{\partial \ell ^*(\vartheta )}{\partial \beta _r}= \iota ^{\!\top }\Bigl ( \Phi ^{-1}T\left( {\mathcal {I}} - \breve{\mathcal {Z}} \right) {\mathbf {v}}_1 + \Phi ^{-1}H\Bigl (-{\mathcal {I}}+{\mathcal {Z}}-{\mathcal {Z}}\breve{\mathcal {Z}} \Bigr ){\mathbf {v}}_2 \Bigr ),\\ J^*_{\beta _r\beta _r}= & {} {\mathbf {v}}_1^{\!\top } V_{\beta \beta } {\mathbf {v}}_1 +2{\mathbf {v}}_1^{\!\top }V_{\beta \gamma } \; {\mathbf {v}}_2 +{\mathbf {v}}_2^{\!\top }V_{\gamma \gamma } \; {\mathbf {v}}_2, \quad J^*_{\kappa \kappa }=X_{(r)}^{\!\top } \; V_{\beta \beta } \; X_{(r)}, \\ J^*_{\beta _r\kappa }= & {} J_{\kappa \beta _r}^{\!\top }= {\mathbf {v}}_1^{\!\top } V_{\beta \beta } \; X_{(r)}+{\mathbf {v}}_2^{\!\top } \; V_{\beta \gamma } \; X_{(r)}, \quad J^*_{\kappa \tau }=J_{\tau \kappa }^{\!\top }=X_{(r)}^{\!\top }V_{\beta \gamma } \; Z, \\ J^*_{\beta _r\tau }= & {} J_{\tau \beta _r}^{\!\top }= {\mathbf {v}}_1^{\!\top }V_{\beta \gamma } \; Z +{\mathbf {v}}_2^{\!\top }V_{\gamma \gamma } \; Z, \quad J^*_{\tau \tau }= Z^{\!\top }V_{\gamma \gamma } \; Z \end{aligned}$$

and

$$\begin{aligned} I^*_{\beta _r\beta _r}= & {} {\mathbf {v}}_1^{\!\top } \Phi ^{-1}T^2\Phi ^{-1} {\mathbf {v}}_1 +2({\mathcal {E}}-1){\mathbf {v}}_1^{\!\top } \Phi ^{-1}T H \Phi ^{-1} {\mathbf {v}}_2\\&+\bigl (1+\Gamma ^{(2)}(2)\bigr ){\mathbf {v}}_2^{\!\top }\Phi ^{-1}H^2\Phi ^{-1}{\mathbf {v}}_2, \end{aligned}$$

where \({\mathbf {v}}_1=\left( {\mathbf {x}}_{\cdot r}-X_{(r)}A^{\!\top } \right) \), \({\mathbf {v}}_2=-(ZB^{\!\top })\), \(V_{\beta \beta }=\Phi ^{-1}T\Bigl (\breve{\mathcal {Z}}\Phi ^{-1} + ({\mathcal {I}}-\breve{\mathcal {Z}})ST\Bigr )T\), \(V_{\beta \gamma }=\Phi ^{-1}T({\mathcal {I}}-\breve{\mathcal {Z}}+{\mathcal {Z}}\breve{\mathcal {Z}})H\Phi ^{-1}\) and \(V_{\gamma \gamma }=\Phi ^{-1}H\Bigl ((-{\mathcal {I}}+2{\mathcal {Z}}-2{\mathcal {Z}}\breve{\mathcal {Z}}+{\mathcal {Z}}^2\breve{\mathcal {Z}})\Phi ^{-1}+(-{\mathcal {I}}+{\mathcal {Z}}-{\mathcal {Z}}\breve{\mathcal {Z}})QH\Bigr )H\). DiCiccio & Martin’s adjusted signed likelihood ratio statistic can now be obtained by replacing the formulas above in (9).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, S.L.P., Pinheiro, E.C. Small-sample one-sided testing in extreme value regression models. AStA Adv Stat Anal 100, 79–97 (2016). https://doi.org/10.1007/s10182-015-0251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-015-0251-y

Keywords

Navigation