Skip to main content
Log in

Assessing cellular responses to milled recycled carbon fiber in alveolar macrophages

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Carbon fibers and their composites are finding their way into applications in a variety of industrial fields; however, insight into the safety of carbon fibers remains scarce. In this study, the cytotoxicity of milled recycled carbon fiber was examined using NR8383 cells (alveolar macrophages) in a comparison with multi-walled/single-walled carbon nanotubes and carbon black nanoparticles. Following exposure, no significant cytotoxicity or metabolic inhibition of milled recycled carbon fiber was evident. Phagocytosis into macrophage cells was observed, but which significantly increased NO production, indicative of macrophage cell activation. No significant effect on intracellular reactive oxygen species production or the inflammatory response occurred at the gene expression level. Although milled recycled carbon fibers are taken up into cells and affect NO production, other cellular responses were smaller compared with those of carbon nanotubes and carbon black. The reason for the smaller responses and the effects on other cellular processes require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CB:

Carbon black

mrCF:

Milled recycled carbon fiber

MWCNT:

Multi-walled carbon nanotube

PCR:

Polymerase chain reaction

ROS:

Reactive oxygen species

SWCNT:

Single wall carbon nanotube

References

  1. Hwang D, Lee SG, Cho D (2021) Dual-sizing effects of carbon fiber on the thermal, mechanical, and impact properties of carbon fiber/ABS composites. Polymers 13:2298. https://doi.org/10.3390/polym13142298

    Article  Google Scholar 

  2. Bledzki AK, Seidlitz H, Krenz J, Goracy K, Urbaniak M, Rösch JJ (2020) Recycling of carbon fiber reinforced composite polymers-review-part 2: recovery and application of recycled carbon fibers. Fibers Polym (Basel) 12:3003. https://doi.org/10.3390/polym12123003

    Article  Google Scholar 

  3. Islam M, Sadaf A, Gómez MR, Mager D, Korvink JG, Lantada AD (2021) Carbon fiber/microlattice 3D hybrid architecture as multi-scale scaffold for tissue engineering. Mater Sci Eng C Mater Biol Appl 126:112140. https://doi.org/10.1016/j.msec.2021.112140

    Article  Google Scholar 

  4. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, Ogihara N, Nakamura K, Ishigaki N, Kato H, Haniu H, Taruta S, Kim YA, Endo M (2011) Application of carbon fibers to biomaterials: a new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev 40:3824–3834. https://doi.org/10.1039/C0CS00120A

    Article  Google Scholar 

  5. Owen PE, Glaister JR, Ballantyne B, Clary JJ (1986) Subchronic inhalation toxicology of carbon fibers. J Occup Med 28:373–376

    Google Scholar 

  6. Zhang Z, Wang X, Lin L, Xing S, Wu Y, Li Y, Wu L, Gang B (2001) The effects of carbon fibre and carbon fibre composite dusts on bronchoalveolar lavage component of rats. J Occup Health 43:75–79. https://doi.org/10.1539/joh.43.75

    Article  Google Scholar 

  7. Nakano M, Nagataki Y, Omae K (2008) Carbon fiber toxicity (in Japanese). Literature introduction regarding industrial health in Japan and overseas. Ind Health J 31:74–77

  8. Ueda H, Moriyama A, Iwahashi H, Moritomi H (2021) Organizational issues for disseminating recycling technologies of carbon fiber-reinforced plastics in the Japanese industrial landscape. J Mater Cycles Waste Manag 23:505–515. https://doi.org/10.1007/s10163-020-01138-8

    Article  Google Scholar 

  9. Itazu H, Kamiyoshi H, Moritomi H (2013) Recovery technology for long fiber recycle carbon fiber by energy-saving pyrolysis method (in Japanese). J Jpn Soc Mater Cycles Waste Manag 24:371–378

    Google Scholar 

  10. Ueda H, Fukuta R, Ohno T, Moriyama A, Himaki T, Iwahashi H, Moritomi H (2021) Assessment of biological effects and harm to Japanese medaka due to carbonized carbon fibers generated by a pyrolysis carbon fiber recycling process. J Mater Cycles Waste Manag 23:1071–1080. https://doi.org/10.1007/s10163-021-01191-x

    Article  Google Scholar 

  11. Moriyama A, Hasegawa T, Nagaya C, Hamada K, Himaki T, Murakami M, Horie M, Takahashi J, Iwahashi H, Moritomi H (2019) Assessment of harmfulness and biological effect of carbon fiber dust generated during new carbon fiber recycling method. J Hazard Mater 378:120777. https://doi.org/10.1016/j.jhazmat.2019.120777

    Article  Google Scholar 

  12. Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92:121–141. https://doi.org/10.1007/s00204-017-2144-1

    Article  Google Scholar 

  13. Horie M, Tabei Y, Sugino S, Fukui H, Nishioka A, Hagiwara Y, Sato K, Yoneda T, Tada A, Koyama T (2019) Comparison of the effects of multiwall carbon nanotubes on the epithelial cells and macrophages. Nanotoxicology 13:861–878. https://doi.org/10.1080/17435390.2019.1592258

    Article  Google Scholar 

  14. Nahle S, Cassidy H, Leroux MM, Mercier R, Ghanbaja J, Doumandji Z, Matallanas D, Rihn BH, Joubert O, Ferrari L (2020) Genes expression profiling of alveolar macrophages exposed to non-functionalized, anionic and cationic multi-walled carbon nanotubes shows three different mechanisms of toxicity. J Nanobiotechnology 18:36. https://doi.org/10.1186/s12951-020-0587-7

    Article  Google Scholar 

  15. Nahle S, Safar R, Grandemange S, Foliguet B, Lovera-Leroux M, Doumandji Z, Le Faou A, Joubert O, Rihn B, Ferrari L (2019) Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages. J Appl Toxicol 39:764–772. https://doi.org/10.1002/jat.3765

    Article  Google Scholar 

  16. Westphal GA, Rosenkranz N, Brik A, Weber D, Föhring I, Monsé C, Kaiser N, Hellack B, Mattenklott M, Brüning T, Johnen G, Bünger J (2019) Multi-walled carbon nanotubes induce stronger migration of inflammatory cells in vitro than asbestos or granular particles but a similar pattern of inflammatory mediators. Toxicol In Vitro 58:215–223. https://doi.org/10.1016/j.tiv.2019.03.036

    Article  Google Scholar 

  17. Fujita K, Obara S, Maru J, Endoh S (2020) Cytotoxicity profiles of multi-walled carbon nanotubes with different physico-chemical properties. Toxicol Mech Methods 30:477–489. https://doi.org/10.1080/15376516.2020.1761920

    Article  Google Scholar 

  18. Ogorodnik E, Karsai A, Wang KH, Liu FT, Lo SH, Pinkerton KE, Gilbert B, Haudenschild DR, Liu GY (2020) Direct observations of silver nanowire-induced frustrated phagocytosis among NR8383 lung alveolar macrophages. J Phys Chem B 124:11584–11592. https://doi.org/10.1021/acs.jpcb.0c08132

    Article  Google Scholar 

  19. Mannerström M, Zou J, Toimela T, Pyykkö I, Heinonen T (2016) The applicability of conventional cytotoxicity assays to predict safety/toxicity of mesoporous silica nanoparticles, silver and gold nanoparticles and multi-walled carbon nanotubes. Toxicol In Vitro 37:113–120. https://doi.org/10.1016/j.tiv.2016.09.012

    Article  Google Scholar 

  20. Fujita K, Fukuda M, Endoh S, Maru J, Kato H, Nakamura A, Shinohara N, Uchino K, Honda K (2015) Size effects of single-walled carbon nanotubes on in vivo and in vitro pulmonary toxicity. Inhal Toxicol 27:207–223. https://doi.org/10.3109/08958378.2015.1026620

    Article  Google Scholar 

  21. Fujita K, Take S, Tani R, Maru J, Obara S, Endoh S (2018) Assessment of cytotoxicity and mutagenicity of exfoliated graphene. Toxicol In Vitro 52:195–202. https://doi.org/10.1016/j.tiv.2018.06.016

    Article  Google Scholar 

  22. Rostami MS, Khodaei MM, Rostami S (2022) Polymer-based nanocomposites reinforced with functionalized-MWCNT and their utilizing as sorbent for removal of MB and CD2+ ion from water media: a review. J Organomet Chem 957:122170. https://doi.org/10.1016/j.jorganchem.2021.122170

    Article  Google Scholar 

  23. Wei X, Li S, Wang W, Zhang X, Zhou W, Xie S, Liu H (2022) Recent advances in structure separation of single-wall carbon nanotubes and their application in optics, electronics, and optoelectronics. Adv Sci (Weinh) 9:e2200054. https://doi.org/10.1002/advs.202200054

    Article  Google Scholar 

  24. Watson AY, Valberg PA (2001) Carbon black and soot: two different substances. AIHA J 62:218–228. https://doi.org/10.1080/15298660108984625

    Article  Google Scholar 

  25. Horie M, Komaba LK, Kato H, Nakamura A, Yamamoto K, Endoh S, Fujita K, Kinugasa S, Mizuno K, Hagihara Y, Yoshida Y, Iwahashi H (2012) Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diam Relat Mater 24:15–24. https://doi.org/10.1016/j.diamond.2012.01.037

    Article  Google Scholar 

  26. Fujita K, Fukuda M, Endoh S, Kato H, Maru J, Nakamura A, Uchino K, Shinohara N, Obara S, Nagano R, Horie M, Kinugasa S, Hashimoto H, Kishimoto A (2013) Physical properties of single-wall carbon nanotubes in cell culture and their dispersal due to alveolar epithelial cell response. Toxicol Mech Methods 23:598–609. https://doi.org/10.3109/15376516.2013.811568

    Article  Google Scholar 

  27. Al-Jamal KT, Kostarelos K (2010) Assessment of cellular uptake and cytotoxicity of carbon nanotubes using flow cytometry. Methods Mol Biol 625:123–134. https://doi.org/10.1007/978-1-60761-579-8_11

  28. Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, Jiang L, Ohara H, Takahashi T, Ichihara G, Kostarelos K, Miyata Y, Shinohara H, Toyokuni S (2011) Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci U S A 108:E1330–E1338. https://doi.org/10.1073/pnas.1110013108

    Article  Google Scholar 

  29. Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I (2018) Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci 19:1813. https://doi.org/10.3390/ijms19061813

    Article  Google Scholar 

  30. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582. https://doi.org/10.1016/j.bbamcr.2014.05.014

    Article  Google Scholar 

  31. Kielbik M, Szulc-Kielbik I, Klink M (2019) The potential role of iNOS in ovarian cancer progression and chemoresistance. Int J Mol Sci 20:1751. https://doi.org/10.3390/ijms20071751

    Article  Google Scholar 

  32. Si M, Lang J (2018) The roles of metallothioneins in carcinogenesis. J Hematol Oncol 11:107. https://doi.org/10.1186/s13045-018-0645-x

    Article  Google Scholar 

  33. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  Google Scholar 

  34. Wang X, Zhang Z, He X, Mao W, Zhou L, Li P (2016) Taurochenodeoxycholic acid induces NR8383 cells apoptosis via PKC/JNK-dependent pathway. Eur J Pharmacol 786:109–115. https://doi.org/10.1016/j.ejphar.2016.06.007

    Article  Google Scholar 

  35. Shi Q, Zhao L, Xu C, Zhang L, Zhao H (2019) High molecular weight hyaluronan suppresses macrophage M1 polarization and enhances IL-10 production in PM2.5-induced lung inflammation. Molecules 24:1766. https://doi.org/10.3390/molecules24091766

  36. Guichard Y, Gaté L, Darne C, Bottin MC, Langlais C, Micillino JC, Goutet M, Julien S, Stéphane B (2010) In vitro study of mutagenesis induced by crocidolite-exposed alveolar macrophages NR8383 in cocultured big blue Rat2 embryonic fibroblasts. J Toxicol 2010:323828. https://doi.org/10.1155/2010/323828

    Article  Google Scholar 

  37. Pardo M, Katra I, Schaeur JJ, Rudich Y (2017) Mitochondria-mediated oxidative stress induced by desert dust in rat alveolar macrophages. GeoHealth 1:4–16. https://doi.org/10.1002/2016GH000017

    Article  Google Scholar 

  38. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J Biom Z 50:346–363. https://doi.org/10.1002/bimj.200810425

    Article  MathSciNet  Google Scholar 

  39. Zhang M, Yang M, Morimoto T, Tajima N, Ichiraku K, Fujita K, Iijima S, Yudasaka M, Okazaki T (2018) Size-dependent cell uptake of carbon nanotubes by macrophages: a comparative and quantitative study. Carbon 127:93–101. https://doi.org/10.1016/j.carbon.2017.10.085

    Article  Google Scholar 

  40. Nathan CF, Hibbs JB (1991) Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol 3:65–70. https://doi.org/10.1016/0952-7915(91)90079-g

    Article  Google Scholar 

  41. Sato M, Bremner I (1993) Oxygen free radicals and metallothionein. Free Radic Biol Med 14:325–337. https://doi.org/10.1016/0891-5849(93)90029-T

    Article  Google Scholar 

  42. Yang M, Zhang M, Nakajima H, Yudasaka M, Iijima S, Okazaki T (2019) Time-dependent degradation of carbon nanotubes correlates with decreased reactive oxygen species generation in macrophages. Int J Nanomedicine 14:2797–2807. https://doi.org/10.2147/IJN.S199187

    Article  Google Scholar 

  43. Shi P, Wan Y, Grandjean A, Lee JM, Tay CY (2021) Clarifying the in-situ cytotoxic potential of electronic waste plastics. Chemosphere 269:128719. https://doi.org/10.1016/j.chemosphere.2020.128719

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Japan Society for the Promotion of Science Fellows #20J11212. The author would like to thank Hiroshi Moritomi (Moritomi Environmental Engineering Laboratory; Meel) for valuable suggestions.

Funding

Grant-in-Aid for Japan Society for the Promotion of Science Fellows, 20J11212, Akihiro Moriyama

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Moriyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriyama, A., Iwahashi, H. & Fujita, K. Assessing cellular responses to milled recycled carbon fiber in alveolar macrophages. J Mater Cycles Waste Manag (2024). https://doi.org/10.1007/s10163-024-01950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10163-024-01950-6

Keywords

Navigation