Skip to main content

Advertisement

Log in

Feasibility of using polyurethane waste in the form of granules for civil construction

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper investigates the feasibility of using industrially treated polyurethane waste in the form of granules (PUG) in substitution of sand for civil construction (blocks for load or non-load bearing walls, screed). Different PUG amounts were introduced into the cement-based mortar. The results show that 10 wt% PUG strongly reduces the workability and the mechanical strength (at 2 and 7 days) compared to a standard mortar (0 wt% PUG) due to the hydrophilic character of PUG. The mixture with 5 wt% PUG which performs better than 10 wt% PUG was optimized on the basis of workability and early age mechanical strength. It is found that among the tested parameters (superplasticizer (S) at different dosages, PUG pre-saturation, water addition, limestone), adding 1.5 wt% S gives the best performances. At 28 days, 5 wt% PUG with 1.5 wt% S reduced the mechanical strength (32 MPa and 6 MPa, respectively in compression and bending compared to 55 MPa and 9 MPa for the standard mortar) and increased the shrinkage. The dry density and the thermal conductivity were reduced respectively by 9% and 10%, which can be interesting for both off-site construction and plastic waste or mineral resources management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hong T, Kim D, Koo C, Kim J (2014) Framework for establishing the optimal implementation strategy of a fuel-cell-based combined heat and power system: focused on multi-family housing complex. Appl Energy 127:11–24. https://doi.org/10.1016/j.apenergy.2014.04.018

    Article  Google Scholar 

  2. De Oliveira BP, Balieiro LCS, Maia LS, Zanini NC, Teixeira EJO, Da Conceição MOT, Medeiros SF, Mulinari DR (2022) Eco-friendly polyurethane foams based on castor polyol reinforced with açaí residues for building insulation. J Mater Cycles Waste Manage 24:553–568. https://doi.org/10.1007/s10163-021-01341-1

    Article  Google Scholar 

  3. Zangheri P, Castellazzi L, D'Agostino D, Economidou M, Ruggieri G, Tsemekidi-Tzeiranaki S, Maduta C, Bertoldi P (2021) Progress of the Member States in implementing the Energy Performance of Building Directive. Publications Office of the European Union, Luxembourg, EUR 30469 EN, ISBN 978-92-76-25200-9, JRC122347. https://doi.org/10.2760/914310

  4. OCDE (2018) Global Material Resources Outlook to 2060 Economic Drivers and Environmental Consequences (highlights-global-material-resources-outlook-to-2060.pdf (oecd.org))

  5. ADEME (2020) Déchets chiffres-clés L’essentiel 2020 (Déchets chiffres-clés L'essentiel 2020 - La librairie ADEME). Déchets chiffres-clés L'essentiel 2020 - La librairie ADEME

  6. Laneyrie C, Beaucour AL, Green MF, Hebert RL, Ledesert B, Noumowe A (2016) Influence of recycled coarse aggregates on normal and high performance concrete subjected to elevated temperatures. Constr Build Mater 111:368–378. https://doi.org/10.1016/j.conbuildmat.2016.02.056

    Article  Google Scholar 

  7. Mounanga P, Gbongbon W, Poullain P, Turcry P (2008) Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cement Concr Compos 30(9):806–814. https://doi.org/10.1016/j.cemconcomp.2008.06.007

    Article  Google Scholar 

  8. Somarathna HMCC, Raman SN, Mohotti D, Mutalib AA, Badri KH (2018) The use of polyurethane for structural and infrastructural engineering applications: a state-of-the-art review. Constr Build Mater 190:995–1014. https://doi.org/10.1016/j.conbuildmat.2018.09.166

    Article  Google Scholar 

  9. Deng Y, Dewil R, Appels L, Ansart R, Baeyens J, Kang Q (2021) Reviewing the thermo-chemical recycling of waste polyurethane foam. J Environ Manage. https://doi.org/10.1016/j.jenvman.2020.111527

    Article  Google Scholar 

  10. Cuenca-Romero LA, Arroyo R, Alonso A, Gutiérrez-Gonzalez S, Calderon V (2022) Characterization properties and fire behaviour of cement blocks with recycled polyurethane roof wastes. J Build Eng 50:104075. https://doi.org/10.1016/j.jobe.2022.104075

    Article  Google Scholar 

  11. Dzulkifi MH, Majid RA, Yahya MY (2022) Reclaimed rockwool fibers for thermally stable palm oil-based polyurethane foam. J Mater Cycles Waste Manage 24:2416–2425. https://doi.org/10.1007/s10163-022-01488-5

    Article  Google Scholar 

  12. Santucci V, Fiore S (2021) Recovery of waste polyurethane from e-waste—part I: investigation of the oil sorption potential. Materials 14:6230. https://doi.org/10.3390/ma14216230

    Article  Google Scholar 

  13. Gómez-Rojo R, Alameda L, Rodríguez A, Calderón V, Gutiérrez-González S (2019) Characterization of polyurethane foam waste for reuse in eco-efficient building materials. Polymers 11:359

    Article  Google Scholar 

  14. Arroyo R, Horgnies M, Junco C, Rodríguez A, Calderón V (2019) Lightweight structural eco-mortars made with polyurethane wastes and non-Ionic surfactants. Constr Build Mater 197:157–163. https://doi.org/10.1016/j.conbuildmat.2018.11.214

    Article  Google Scholar 

  15. Farhan S, Wang R, Jiang H, Li K (2016) Use of waste rigid polyurethane for making carbon foam with fireproofing and anti-ablation properties. Mater Des 101:332–339. https://doi.org/10.1016/j.matdes.2016.04.008

    Article  Google Scholar 

  16. Magnago RF, De Alcântara BT, De Aguiar AC, Baungarten P, Mendonça BAB, Silva HRT, Egert P, Girotto E, Júnior AC, Parma GOC (2021) Recycling glass-polishing sludge and aluminum anodising sludge in polyurethane and cement composites: fre performance and mechanical properties. J Mater Cycles Waste Manage 23:1126–1140. https://doi.org/10.1007/s10163-021-01202-x

    Article  Google Scholar 

  17. Trzebiatowska PJ, Dzierbicka A, Kamińska N, Datta J (2018) The influence of different glycerine purities on chemical recycling process of polyurethane waste and resulting semi-products. Polym Int 67:1368–1377. https://doi.org/10.1002/pi.5638

    Article  Google Scholar 

  18. Mahmoud AA, Nasr EA, Zulfiqar S, Sarwar MI, Maamoun AA (2021) Fabrication of castor oil-derived polyurethane mortar composites with energy saving and sound absorption characteristics. J Polym Res 28:483. https://doi.org/10.1007/s10965-021-02836-z

    Article  Google Scholar 

  19. Corinaldesi V, Mazzoli A, Moriconi G (2011) Mechanical Behavior and thermal conductivity of mortars containing waste rubber particles. Mater Des 32:1646–1650. https://doi.org/10.1016/j.matdes.2010.10.013

    Article  Google Scholar 

  20. Junco C, Rodríguez A, Calderón V, Muñoz-Rupérez C, Gutiérrez-González S (2018) Fatigue durability test of mortars incorporating polyurethane foam wastes. Constr Build Mater 190:373–381. https://doi.org/10.1016/j.conbuildmat.2018.09.161

    Article  Google Scholar 

  21. Vicario IS, Cuenca-Romero LA, González SG, Carpintero VC, Saiz AR (2020) Design and characterization of gypsum mortars dosed with polyurethane foam waste PFW. Materials 13(7):1497. https://doi.org/10.3390/ma13071497

    Article  Google Scholar 

  22. Junco C, Gadea J, Rodríguez A, Gutiérrez-González S, Calderón V (2012) Durability of lightweight masonry mortars made with white recycled polyurethane foam. Cement Concr Compos 34:1174–1179. https://doi.org/10.1016/j.cemconcomp.2012.07.006

    Article  Google Scholar 

  23. Junco C, Rodríguez A, Gadea J, Calderón V (2015) Deformability of mortars incorporating polyurethane foam waste under cyclic compression fatigue test. Adv Mater Res 1129:477–483. https://doi.org/10.4028/www.scientific.net/AMR.1129.477

    Article  Google Scholar 

  24. Gadea J, Rodríguez A, Campos PL, Garabito J, Calderón V (2010) Lightweight mortar made with recycled polyurethane foam. Cement Concrete Compos 32:672–677. https://doi.org/10.1016/j.cemconcomp.2010.07.017

    Article  Google Scholar 

  25. Ben Fraj A, Kismi M, Mounanga P (2010) Valorization of coarse rigid polyurethan foam waste in lightweight aggregate concrete. Constr Build Mater 24(6):1069–1077. https://doi.org/10.1016/j.conbuildmat.2009.11.010

    Article  Google Scholar 

  26. Calderón V, Gutiérrez-González S, Gadea J, Rodríguez Á, Junco C (2018) Construction applications of polyurethane foam wastes. Recycling of Polyurethane Foams. William Andrew Publishing, Norwich, pp 115–125. https://doi.org/10.1016/B978-0-323-51133-9.00010-3

    Chapter  Google Scholar 

  27. Dong YH, Jaillon L, Chu P, Poon CS (2015) Comparing carbon emissions of precast and cast-in-situ construction methods – a case study of high-rise private building. Constr Build Mater 99:39–53. https://doi.org/10.1016/j.conbuildmat.2015.08.145

    Article  Google Scholar 

  28. Nehdi M (2000) Why some carbonate fillers cause rapid increase of viscosity in dispersed cement-based materials. Cement Concr Res. https://doi.org/10.1016/S0008-8846(00)00353-7

    Article  Google Scholar 

  29. Salem T, Fois M, Omikrine-Metalssi O, Manuel R, Fen- Chong T (2020) Thermal and mechanical performances of cement-based mortars reinforced with vegetable synthetic sponge wastes and silica fume. Constr Build Mater 264:120213. https://doi.org/10.1016/j.conbuildmat.2020.120213

    Article  Google Scholar 

  30. Pang M, Sun Z, Chen M, Lang J, Dong J, Tian X, Sun J (2020) Influence of phosphorus slag on physical and mechanical properties of cement mortars. Materials 13(10):2390. https://doi.org/10.3390/ma13102390

    Article  Google Scholar 

  31. Sezer GI (2012) Compressive strength and sulfate resistance of limestone and/or silica fume mortars. Constr Build Mater 26(1):613–618. https://doi.org/10.1016/j.conbuildmat.2011.06.064

    Article  Google Scholar 

  32. Xia J, Yu B, Wang H, Han B, Chen Y, Xie C (2021) Study on properties and pore structure characteristics of cement-based materials with limestone powder. J Phys Conf Ser 1904:012022. https://doi.org/10.1088/1742-6596/1904/1/012022

    Article  Google Scholar 

  33. Ho CM, Doh SI, Jing GQ, Chin SC, Li XF (2021) Investigation of superplasticizer dosage on fresh and hardened properties of steel slag mortar. World sustainable construction conference series 2021 AIP conf. Proc 2688:020012-1–020012-8. https://doi.org/10.1063/5.0112985

    Article  Google Scholar 

  34. Aattache A (2022) Properties and durability of partially replaced cement-based composite mortars co-using powders of a nanosilica superplasticizer and finely ground plastic waste. J Build Eng 51:104257. https://doi.org/10.1016/j.jobe.2022.104257

    Article  Google Scholar 

  35. Kaur G, Pavia S (2020) Physical properties and microstructure of plastic aggregate mortars made with acrylonitrile-butadiene-styrene (A.B.S.), polycarbonate (P.C.), polyoxymethylene (P.O.M.) and ABS/PC blend waste. J Build Eng 31:101341. https://doi.org/10.1016/j.jobe.2020.101341

    Article  Google Scholar 

  36. Hamzaoui R, Guessasma S, Abahri K, Bouchenafa O (2020) Formulation of modified cement mortars using optimal combination of fly ashes, shiv and hemp fibres. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002918

    Article  Google Scholar 

  37. Kismi M, Mounanga P (2012) Comparison of short and long-term performances of lightweight aggregate mortars made with polyurethane foam waste and expanded polystyrene beads. Proceedings on 2nd International Seminar on Innovation and Valorization in Civil Engineering and Construction Materials, vol 2. MATEC Web of Conferences, Paris, p 02019

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Jean-François Bouteloup (Univ Gustave Eiffel, Cerema, UMR MCD) for open porosity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thouraya Salem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, T., Shehadeh, D., Bouchenafa, O. et al. Feasibility of using polyurethane waste in the form of granules for civil construction. J Mater Cycles Waste Manag 25, 3812–3823 (2023). https://doi.org/10.1007/s10163-023-01807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01807-4

Keywords

Navigation