Skip to main content
Log in

Optimization of synthesis parameters from industrial waste recycling to eco-humidity control zeolite: discussion on response to indoor environment comfor

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The objective in this study was to use sandblasting waste (SW) and liquid crystal display waste glass (LWG) in the synthesis of eco-humidity control zeolite (E-HCZ) for use in the construction industry. Synthesis involved alkali fusion and hydrothermal processing, wherein the processing parameters ((SiO2)/(Al2O3) molar ratio, reaction temperature, reaction duration) were optimized using the reaction surface method in conjunction with Box–Behnken experiment design. An F value of 108.46 indicated the efficacy of the model. The important model terms included linear factors (A. (SiO2)/(Al2O3) molar ratio, B. reaction temperature, and C. reaction duration), square factors (A2, B2, and C2), and sympathetic factor AB. The model achieved a verification coefficient R2 of 0.9949, and the data obtained in experiments was consistent with the regression results. The adequacy of the regression model was confirmed by strong agreement between the predicted R2 (0.9149) and the adjusted R2 (0.9857), while the sufficiency of the signal was confirmed by a high signal-to-noise ratio (36.889). The results also indicate strong correspondence between actual vs. predicted probability plots. The high moisture adsorption capacity of the proposed zeolite (58.58 g/m2) demonstrates that LWG and SW can indeed be used to synthesize low-cost humidity control materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed duration this study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  1. Arundel AV, Sterling EM, Biggin JH, Sterling TD (1986) Indirect health effects of relative humidity in indoor environments. Environ Health Perspect 65:351–361. https://doi.org/10.1289/ehp.8665351

    Article  Google Scholar 

  2. Ferone C, Capasso I, Bonati A, Roviello G, Montagnaro F, Santoro L, Turco R, Cioffi R (2019) Sustainable management of water potabilization sludge by means of geopolymers production. J Clean Prod 229:1–9. https://doi.org/10.1016/j.jclepro.2019.04.299

    Article  Google Scholar 

  3. Casey SP, Hall MR, Tsang SCE, Khan MA (2013) Energetic and hygrothermal analysis of a nano-structured material for rapid-response humidity buffering in closed environments. Build Environ 60:24–36. https://doi.org/10.1016/j.buildenv.2012.11.007

    Article  Google Scholar 

  4. Feng X, Qin M, Cui S, Rode C (2018) Metal-organic framework MIL-100 (Fe) as a novel moisture buffer material for energy-efficient indoor humidity control. Build Environ 145:234–242. https://doi.org/10.1016/j.buildenv.2018.09.027

    Article  Google Scholar 

  5. Hou P, Qin M, Cui S, Zu K (2020) Preparation and characterization of metal-organic framework/microencapsulated phase change material composites for indoor hygrothermal control. J Build Eng 31:101345. https://doi.org/10.1016/j.jobe.2020.101345

    Article  Google Scholar 

  6. Tsobnang PK, Hastürk E, Fröhlich D, Wenger E, Durationand P, Ngolui JL, Lecomte C, Lecomte C (2019) Water vapor single-gas selectivity via flexibility of three potential materials for autonomous indoor humidity control. Cryst Growth Des 19:2869–2880. https://doi.org/10.1021/acs.cgd.9b00097

    Article  Google Scholar 

  7. Vu DH, Wang KS, Bac BH (2011) Humidity control porous ceramics prepared from waste and porous materials. Mater Lett 65:940–943. https://doi.org/10.1016/j.cplett.2019.02.044

    Article  Google Scholar 

  8. Zhang H, Yoshino H (2010) Analysis of indoor humidity environment in Chinese residential buildings. Build Environ 45:2132–2140. https://doi.org/10.1016/j.buildenv.2010.03.011

    Article  Google Scholar 

  9. Liu X, Chen Z, Yang G, Gao Y (2019) Bioinspired ant-nest-like hierarchical porous material using CaCl2 as additive for smart indoor humidity control. Ind Eng Chem Res 58:7139–7145. https://doi.org/10.1021/acs.iecr.8b06092

    Article  Google Scholar 

  10. Gutierrez-Rubio S, Shamzhy M, Čejka J, Serrano DP, Coronado JM, Moreno I (2022) Synthesis of cyclohexylphenol via phenol hydroalkylation using Co2P/zeolite catalysts. Catal Today 390:135–145. https://doi.org/10.1016/j.cattod.2021.11.039

    Article  Google Scholar 

  11. Sapawe N, Jalil AA, Triwahyono S, Shah MIA, Jusoh R, Salleh NFM, Hameed BH, Karim AH (2013) Cost-effective microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chem Eng J 229:388–398. https://doi.org/10.1016/j.cej.2013.06.005

    Article  Google Scholar 

  12. Hernandez-Tamargo C, Kwakye-Awuah B, O’Malley AJ, de Leeuw NH (2021) Mercury exchange in zeolites Na-A and Na-Y studied by classical molecular dynamics simulations and ion exchange experiments. Microporous Mesoporous Mater 315:110903. https://doi.org/10.1016/j.micromeso.2021.110903

    Article  Google Scholar 

  13. Wdowin M, Franus M, Panek R, Badurationa L, Franus W (2014) The conversion technology of fly ash into zeolites. Clean Technol Environ Policy 16:1217–1223. https://doi.org/10.1007/s10098-014-0719-6

    Article  Google Scholar 

  14. Samanta NS, Das PP, Mondal P, Changmai M, Purkait MK (2022) Critical review on the synthesis and advancement of industrial and biomass waste-based zeolites and their applications in gas adsorption and biomedical studies. J Indian Chem Soc 99:100761. https://doi.org/10.1016/j.jics.2022.100761

    Article  Google Scholar 

  15. Lee KM, Jo YM (2010) Synthesis of zeolite from waste fly ash for adsorption of CO2. J Mater Cycles Waste Manag 12:212–219. https://doi.org/10.1007/s10163-010-0290-0

    Article  Google Scholar 

  16. Osacký M, Binčík T, Hudcová B, Vítková M, Pálková H, Hudec P, Czímerová A (2022) Low-cost zeolite-based sorbents prepared from industrial perlite by-product material for Zn2+ and Ni2+ removal from aqueous solutions: synthesis, properties and sorption efficiency. Heliyon 8:e12029. https://doi.org/10.1016/j.heliyon.2022.e12029

    Article  Google Scholar 

  17. Wu R, Xiao Y, Zhang P, Lin J, Cheng G, Chen Z, Yu R (2022) Asphalt VOCs reduction of zeolite synthesized from solid wastes of red mud and steel slag. J Clean Prod 345:131078. https://doi.org/10.1016/j.jclepro.2022.131078

    Article  Google Scholar 

  18. Zhang C, Li S (2018) Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J Mater Cycles Waste Manag 20:1605–1614. https://doi.org/10.1007/s10163-018-0724-7

    Article  Google Scholar 

  19. Chen Q, Long L, Liu X, Jiang X, Chi Y, Yan J, Kong L (2020) Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment. J Mater Cycles Waste Manag 22:1196–1207. https://doi.org/10.1007/s10163-020-01020-7

    Article  Google Scholar 

  20. Abid R, Delahay G, Tounsi H (2019) Preparation of LTA, HS and FAU/EMT intergrowth zeolites from aluminum scraps and industrial metasilicate. J Mater Cycles Waste Manag 21:1188–1196. https://doi.org/10.1007/s10163-019-00873-x

    Article  Google Scholar 

  21. Goodship V, Stevels A, Huisman J (2019) Waste electrical and electronic equipment (WEEE) handbook. Woodhead Publishing 3:57–92. https://doi.org/10.1016/C2016-0-03853-6

    Article  Google Scholar 

  22. Kim K, Kim K (2019) Recycling of waste glass generated from end-of-life LCD devices: a feasibility study using simulated waste glass. J Clean Prod 227:199–206. https://doi.org/10.1016/j.jclepro.2019.04.200

    Article  Google Scholar 

  23. Environmental Protection Administration, Executive Yuan, Taiwan (R.O.C.), Industrial Waste Report and Management System. https://waste.epa.gov.tw/RWD/Statistics/?page=Year1,2022. Accessed 15 May 2022.

  24. Zhang K, Wu Y, Wang W, Li B, Zhang Y, Zuo T (2015) Recycling indium from waste LCDs: a review. Resour Conserv Recycl 104:276–290. https://doi.org/10.1016/j.resconrec.2015.07.015

    Article  Google Scholar 

  25. Singh R, Budarayavalasa S (2021) Solidification and stabilization of hazardous wastes using geopolymers as sustainable binders. J Mater Cycles Waste Manag 23:1699–1725. https://doi.org/10.1007/s10163-021-01245-0

    Article  Google Scholar 

  26. Rahmawati A, Liu JC (2020) Recovery of indium from extractants of waste indium tin oxide (ITO) by aluminum cementation. J Mater Cycles Waste Manag 22:326–332. https://doi.org/10.1007/s10163-019-00916-3

    Article  Google Scholar 

  27. Ojha K, Pradhan NC, Samanta AN (2004) Zeolite from fly ash: synthesis and characterization. Bull Mater Sci 27:555–564. https://doi.org/10.1007/BF02707285

    Article  Google Scholar 

  28. Park M, Choi CL, Lim WT, Kim MC, Choi J, Heo NH (2000) Molten-salt method for the synthesis of zeolitic materials: II. Characterization of zeolitic materials. Microporous Mesoporous Mater 37:91–98. https://doi.org/10.1016/S1387-1811(99)00195-X

    Article  Google Scholar 

  29. Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J (1990) New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel 69:263–266. https://doi.org/10.1016/0016-2361(90)90187-U

    Article  Google Scholar 

  30. Aldahri T, Behin J, Kazemian H, Rohani S (2017) Effect of microwave irradiation on crystal growth of zeolitized coal fly ash with different solid/liquid ratios. Adv Powder Technol 28:2865–2874. https://doi.org/10.1016/j.apt.2017.08.013

    Article  Google Scholar 

  31. Hong JLX, Maneerung T, Koh SN, Kawi S, Wang CH (2017) Conversion of coal fly ash into zeolite materials: synthesis and characterizations, process design, and its cost-benefit analysis. Ind Eng Chem Res 56:11565–11574. https://doi.org/10.1021/acs.iecr.7b02885

    Article  Google Scholar 

  32. Lazic ZR (2006) Design of experiments in chemical engineering: a practical guide. Wiley. https://doi.org/10.1002/3527604162. Accessed 20 July 2022.

  33. Sivalingam S, Sen S (2018) Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Appl Surf Sci 455:903–910. https://doi.org/10.1016/j.apsusc.2018.05.222

    Article  Google Scholar 

  34. Evans M (2003) Optimisation of manufacturing processes: a response surface approach, vol 791, 1st edn. CRC Press, London, United Kingdom

    Google Scholar 

  35. Kumar A, Prasad B, Mishra IM (2007) Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem Eng Technol 30:932–937. https://doi.org/10.1002/ceat.200700084

    Article  Google Scholar 

  36. Patel KG, Srivastava VK (2014) Recent advances in the synthesis of zeolite from fly ash. J Interdiscip Multidiscip Res (ICMRP-2014). Accessed 30 Nov 2022.

  37. Jin Y, Li L, Liu Z, Zhu S, Wang D (2021) Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method. Adv Powder Technol 32:791–801. https://doi.org/10.1016/j.apt.2021.01.024

    Article  Google Scholar 

  38. Tan XH, Wang JG, Liu XR (2005) Improved response surface method and its application to reliability analysis. Chinese Journal of Rock Mechanics and Engineering. http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2005S2105.htm. Accessed 21 Oct 2022.

  39. Oyinade A, Kovo AS, Hill P (2016) Synthesis, characterization and ion exchange isotherm of zeolite Y using Box-Behnken design. Adv Powder Technol 27:750–755. https://doi.org/10.1016/j.apt.2016.03.002

    Article  Google Scholar 

  40. Murukutti MK, Jena H (2022) Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste. J Hazard Mater 423:127085. https://doi.org/10.1016/j.jhazmat.2021.127085

    Article  Google Scholar 

  41. Bai SX, Zhou LM, Chang ZB, Zhang C, Chu M (2018) Synthesis of Na-X zeolite from Longkou oil shale ash by alkali fusion hydrothermal method. Carbon Resour Convers 1:245–250. https://doi.org/10.1016/j.crcon.2018.08.005

    Article  Google Scholar 

  42. Kazemian H, Naghdali Z, Kashani TG, Farhadi F (2010) Conversion of high silicon fly ash to Na-P1 zeolite: alkali fusion followed by hydrothermal crystallization. Adv Powder Technol 21:279–283. https://doi.org/10.1016/j.apt.2009.12.005

    Article  Google Scholar 

  43. Belviso C, Cavalcante F, Huertas FJ, Lettino A, Ragone P, Fiore S (2012) The crystallisation of zeolite (X-and A-type) from fly ash at 25 C in artificial sea water. Microporous Mesoporous Mater 162:115–121. https://doi.org/10.1016/j.micromeso.2012.06.028

    Article  Google Scholar 

  44. García-Villén F, Flores-Ruíz E, Verdugo-Escamilla C, Huertas FJ (2018) Hydrothermal synthesis of zeolites using sanitary ware waste as a raw material. Appl Clay Sci 160:238–248. https://doi.org/10.1016/j.clay.2018.02.004

    Article  Google Scholar 

  45. Yoldi M, Fuentes-Ordoñez EG, Korili SA, Gil A (2019) Zeolite synthesis from industrial wastes. Microporous Mesoporous Mater 287:183–191. https://doi.org/10.1016/j.micromeso.2019.06.009

    Article  Google Scholar 

  46. Su S, Ma H, Chuan X (2016) Hydrothermal synthesis of zeolite A from K-feldspar and its crystallization mechanism. Adv Powder Technol 27:139–144. https://doi.org/10.1016/j.apt.2015.11.011

    Article  Google Scholar 

  47. Sayehi M, Garbarino G, Delahay G, Busca G, Tounsi H (2020) Synthesis of high value-added Na–P1 and Na-FAU zeolites using waste glass from fluorescent tubes and aluminum scraps. Mater Chem Phys 248:122903. https://doi.org/10.1016/j.matchemphys.2020.122903

    Article  Google Scholar 

  48. Querol X, Moreno N, Umaña JT, Alastuey A, Hernández E, Lopez-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423. https://doi.org/10.1016/S0166-5162(02)00124-6

    Article  Google Scholar 

  49. Idris SA, Davidson CM, McManamon C, Morris MA, Anderson P, Gibson LT (2011) Large pore diameter MCM-41 and its application for lead removal from aqueous media. J Hazard Mater 185:898–904. https://doi.org/10.1016/j.jhazmat.2010.09.105

    Article  Google Scholar 

  50. Zhang KY, Jiang H, Qin G (2019) Utilization of zeolite as a potential multi-functional proppant for CO2 enhanced shale gas recovery and CO2 sequestration: a molecular simulation study on the competitive adsorption of CH4 and CO2 in zeolite and organic matter. Fuel 292:120312. https://doi.org/10.1016/j.fuel.2021.120312

    Article  Google Scholar 

  51. Shoumkova A, Stoyanova V (2013) SEM–EDX and XRD characterization of zeolite NaA, synthesized from rice husk and aluminium scrap by different procedurationes for preparation of the initial hydrogel. J Porous Mater 20:249–255. https://doi.org/10.1007/s10934-012-9594-x

    Article  Google Scholar 

  52. Balkus KJ, Ly KT (1991) The preparation and characterization of an X-type zeolite: an experiment in solid-state chemistry. J Chem Educ 68(10):875. https://doi.org/10.1021/ed068p875

    Article  Google Scholar 

  53. Majdinasab A, Yuan Q (2019) Microwave synthesis of zeolites from waste glass cullet using landfill leachate as a novel alternative solvent. Mater Chem Phys 223:613–622. https://doi.org/10.1016/j.matchemphys.2018.11.049

    Article  Google Scholar 

  54. Hu Z, Zheng S, Jia M, Dong X, Sun Z (2017) Preparation and characterization of novel diatomite/ground calcium carbonate composite humidity control material. Adv Powder Technol 28:1372–1381. https://doi.org/10.1016/j.apt.2017.03.005

    Article  Google Scholar 

  55. Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Synthesis of ZSM-5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol 85:1623–1634. https://doi.org/10.1016/j.fuproc.2003.10.026

    Article  Google Scholar 

  56. Youcef LD, López-Galindo A, Verdugo-Escamilla C (2020) Synthesis and characterization of zeolite LTA by hydrothermal transformation of a natural Algerian palygorskite. Appl Clay Sci 193:105690. https://doi.org/10.1016/j.clay.2020.105690

    Article  Google Scholar 

  57. Chen Y, Armutlulu A, Sun W, Jiang W, Jiang X, Lai B, Xie R (2020) Ultrafast removal of Cu (II) by a novel hierarchically structured faujasite-type zeolite fabricated from lithium silica fume. Sci Total Environ 714:136724. https://doi.org/10.1016/j.scitotenv.2020.136724

    Article  Google Scholar 

  58. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids, 1st edn. Academic Press, London. https://doi.org/10.1016/B978-0-12-598920-6.X5000-3

    Book  Google Scholar 

  59. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  Google Scholar 

  60. Zhou X, Jin H, Gu A, Li X, Sun L, Mao P, Yang Y, Ding S, Chen J, Yun S (2022) Eco-friendly hierarchical porous palygorskite/wood fiber aerogels with smart indoor humidity control. J Clean Prod 335:130367. https://doi.org/10.1016/j.jclepro.2022.130367

    Article  Google Scholar 

  61. Guan W, Ji F, Fang D, Cheng Y, Fang Z, Chen Q, Yan P (2014) Porosity formation and enhanced solubility of calcium silicate hydrate in hydrothermal synthesis. Ceram Int 40:1667–1674. https://doi.org/10.1016/j.ceramint.2013.07.058

    Article  Google Scholar 

  62. Pedrolo DRS, de Menezes Quines LK, de Souza G, Marcilio NR (2017) Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. J Environ Chem Eng 5:4788–4794. https://doi.org/10.1016/j.jece.2017.09.015

    Article  Google Scholar 

  63. Imbachi-Gamba CF, Villa AL (2021) Statistical analysis of the influence of synthesis conditions on the properties of hierarchical zeolite Y. Mater Today Chem 20:100442. https://doi.org/10.1016/j.mtchem.2021.100442

    Article  Google Scholar 

  64. Lin YW, Lin KL, Cheng TW, Chen CY, Lo KW (2021) Synthesis and environmental applications of aluminum-containing MCM-41 type material from industrial waste containing silicon and aluminum. J Non Cryst Solids 569:120954. https://doi.org/10.1016/j.jnoncrysol.2021.120954

    Article  Google Scholar 

  65. Murayama N, Yamamoto H, Shibata J (2002) Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. Int J Miner Process 64:1–17. https://doi.org/10.1016/S0301-7516(01)00046-1

    Article  Google Scholar 

  66. Xie H, Gong G, Wu Y (2017) Investigations of equilibrium moisture content with Kelvin modification and dimensional analysis method for composite hygroscopic material. Constr Build Mater 139:101–113. https://doi.org/10.1016/j.conbuildmat.2017.02.018

    Article  Google Scholar 

  67. Vu DH, Wang KS, Bac BH, Nam BX (2013) Humidity control materials prepared from diatomite and volcanic ash. Constr Build Mater 38:1066–1072. https://doi.org/10.1016/j.conbuildmat.2012.09.040

    Article  Google Scholar 

  68. Hamze H, Akia M, Yazdani F (2015) Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Saf Environ Prot 94:1–10. https://doi.org/10.1016/j.matchemphys.2020.122903

    Article  Google Scholar 

  69. Melo CR, Riella HG, Kuhnen NC, Angioletto E, Melo AR, Bernardin AM, da Rocha MR, da Silva L (2012) Synthesis of 4A zeolites from kaolin for obtaining 5A zeolites through ionic exchange for adsorption of arsenic. Mater Sci Eng B 177:345–349. https://doi.org/10.1016/j.mseb.2012.01.015

    Article  Google Scholar 

  70. Melo CCA, Melo BLS, Angelica RS, Paz SPA (2019) Gibbsite-kaolinite waste from bauxite beneficiation to obtain FAU zeolite: synthesis optimization using a factorial design of experiments and response surface methodology. Appl Clay Sci 170:125–134. https://doi.org/10.1016/j.clay.2019.01.010

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Y-WL: writing—original draft and editing, validation, methodology, conceptualization. W-HL: supervision. K-LL: resources, investigation and writing—commenting. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Kae-Long Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YW., Lee, WH. & Lin, KL. Optimization of synthesis parameters from industrial waste recycling to eco-humidity control zeolite: discussion on response to indoor environment comfor. J Mater Cycles Waste Manag 25, 3331–3345 (2023). https://doi.org/10.1007/s10163-023-01755-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01755-z

Keywords

Navigation