Skip to main content

Advertisement

Log in

Effect of addition diatomite powder on mechanical strength, elevated temperature resistance and microstructural properties of industrial waste fly ash-based geopolymer

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study examines the use of fly ash, a thermal power plant waste, and the effect of diatomite, a fossil algae type, on waste-based geopolymers in the production of sustainable geopolymer binders. The effects of 1%, 2%, 3%, 4% and, 5% diatomite substitution on waste-based mortars were investigated. Mortars containing 10% and 12% Na+ by weight based on the binder material were cured at 75 °C for 48 h. The flexural and compressive strength, abrasion resistance, determination of ultrasonic pulse velocity, and resistance to high temperatures of geopolymer mortar samples were investigated. In addition, FESEM images, EDX and XRD analyses of geopolymer mortar samples were made, and their microstructures were examined. 2% diatomite substitution increased flexural and compressive strength. In parallel with this situation, it was concluded that the abrasion resistance and ultrasonic pulse velocity of the geopolymer mortar with 2% diatomite substituted increased. In addition, it has been shown in FESEM images that the microstructure has a denser morphology. All geopolymer mortars lost strength after the high temperatures of 300 °C, 600 °C and 900 °C. As a result, it was concluded that diatomite containing highly reactive silica can be used in geopolymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang P, Zheng Y, Wang K, Zhang J (2018) A review on properties of fresh and hardened geopolymer mortar. Compos Part B Eng 152:79–95. https://doi.org/10.1016/J.COMPOSITESB.2018.06.031

    Article  Google Scholar 

  2. Malhotra VM (2002) Introduction: sustainable development and concrete technology. Concr Int 24(7):22

  3. Ma Y, Ye G (2015) The shrinkage of alkali activated fly ash. Cem Concr Res 68:75–82. https://doi.org/10.1016/J.CEMCONRES.2014.10.024

    Article  Google Scholar 

  4. Morsy MS, Alsayed SH, Al-Salloum Y et al (2014) Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of Fly ash geopolymer binder. Arab J Sci Eng 39(6):4333–4339. https://doi.org/10.1007/S13369-014-1093-8

    Article  Google Scholar 

  5. Duan P, Yan C, Zhou W (2017) Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem Concr Compos 78:108–119. https://doi.org/10.1016/j.cemconcomp.2017.01.009

    Article  Google Scholar 

  6. John SK, Nadir Y, Girija K (2021) Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: a review. Constr Build Mater 280:122443. https://doi.org/10.1016/J.CONBUILDMAT.2021.122443

    Article  Google Scholar 

  7. Saha S, Rajasekaran C (2017) Enhancement of the properties of fly ash based geopolymer paste by incorporating ground granulated blast furnace slag. Constr Build Mater 146:615–620. https://doi.org/10.1016/j.conbuildmat.2017.04.139

    Article  Google Scholar 

  8. Pasupathy K, Berndt M, Sanjayan J et al (2017) Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment. Cem Concr Res 100:297–310. https://doi.org/10.1016/J.CEMCONRES.2017.07.010

    Article  Google Scholar 

  9. Kumar EM, Perumal P, Ramamurthy K (2022) Alkali-activated aerated blends: interaction effect of slag with low and high calcium fly ash. J Mater Cycles Waste Manag 24:1378–1395. https://doi.org/10.1007/s10163-022-01434-5

    Article  Google Scholar 

  10. Saxena R, Gupta T (2022) Assessment of mechanical, durability and microstructural properties of geopolymer concrete containing ceramic tile waste. J Mater Cycles Waste Manag 24:725–742. https://doi.org/10.1007/s10163-022-01353-5

    Article  Google Scholar 

  11. Irshidat MR, Al-Nuaimi N, Rabie M (2022) Sustainable alkali-activated binders with municipal solid waste incineration ashes as sand or fly ash replacement. J Mater Cycles Waste Manag 24:992–1008. https://doi.org/10.1007/s10163-022-01374-0

    Article  Google Scholar 

  12. Altanlar A (2021) (TÜİK) Türkiye İstatistik Kurumu. 37198:3–4

  13. Somna K, Jaturapitakkul C, Kajitvichyanukul P, Chindaprasirt P (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90:2118–2124. https://doi.org/10.1016/j.fuel.2011.01.018

    Article  Google Scholar 

  14. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review. Part 2. About materials and binders manufacture. Constr Build Mater 22:1315–1322. https://doi.org/10.1016/J.CONBUILDMAT.2007.03.019

    Article  Google Scholar 

  15. Palomo A, Grutzeck MW, Blanco MT (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29:1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

    Article  Google Scholar 

  16. Fernández-Jiménez A, Palomo JG, Puertas F (1999) Alkali-activated slag mortars: mechanical strength behaviour. Cem Concr Res 29:1313–1321. https://doi.org/10.1016/S0008-8846(99)00154-4

    Article  Google Scholar 

  17. Xu H, Van Deventer JSJ (2002) Geopolymerisation of multiple minerals. Miner Eng 15:1131–1139. https://doi.org/10.1016/S0892-6875(02)00255-8

    Article  Google Scholar 

  18. Brough AR, Holloway M, Sykes J, Atkinson A (2000) Sodium silicate-based alkali-activated slag mortars: Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res 30:1375–1379. https://doi.org/10.1016/S0008-8846(00)00356-2

    Article  Google Scholar 

  19. Durak U (2022) The improvement of strength and microstructural properties of fly ash-based geopolymer by adding elemental aluminum powder. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-022-01520-8

    Article  Google Scholar 

  20. Durak U, İlkentapar S, Karahan O et al (2021) A new parameter influencing the reaction kinetics and properties of fly ash based geopolymers: a pre-rest period before heat curing. J Build Eng. https://doi.org/10.1016/J.JOBE.2020.102023

    Article  Google Scholar 

  21. Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232. https://doi.org/10.1016/J.CEMCONRES.2004.06.031

    Article  Google Scholar 

  22. Rattanasak U, Chindaprasirt P (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner Eng 22:1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

    Article  Google Scholar 

  23. Atiş CD, Görür EB, Karahan O et al (2015) Very high strength (120 MPa) class F fly ash geopolymer mortar activated at different NaOH amount, heat curing temperature and heat curing duration. Constr Build Mater 96:673–678. https://doi.org/10.1016/j.conbuildmat.2015.08.089

    Article  Google Scholar 

  24. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125. https://doi.org/10.1016/J.CEMCONRES.2015.04.013

    Article  Google Scholar 

  25. Nath SK, Mukherjee S, Maitra S, Kumar S (2017) Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry. J Therm Anal Calorim 127:1953–1961. https://doi.org/10.1007/s10973-016-5823-x

    Article  Google Scholar 

  26. Nath SK, Maitra S, Mukherjee S, Kumar S (2016) Microstructural and morphological evolution of fly ash based geopolymers. Constr Build Mater 111:758–765. https://doi.org/10.1016/J.CONBUILDMAT.2016.02.106

    Article  Google Scholar 

  27. Manikandan P, Vasugi V (2021) A critical review of waste glass powder as an aluminosilicate source material for sustainable geopolymer concrete production. SILICON. https://doi.org/10.1007/s12633-020-00929-w

    Article  Google Scholar 

  28. Pascual AB, Tognonvi TM, Tagnit-Hamou A (2021) Optimization study of waste glass powder-based alkali activated materials incorporating metakaolin: activation and curing conditions. J Clean Prod 308:127435. https://doi.org/10.1016/J.JCLEPRO.2021.127435

    Article  Google Scholar 

  29. Durak U, Karahan O, Uzal B, et al (2018) The ınvestigation of mechanical effects of nano sio 2 particles for different sodium ıon concentrations on fly ash based geopolymer mortar. pp 4–9

  30. Okoye FN, Prakash S, Singh NB (2017) Durability of fly ash based geopolymer concrete in the presence of silica fume. J Clean Prod 149:1062–1067. https://doi.org/10.1016/J.JCLEPRO.2017.02.176

    Article  Google Scholar 

  31. Barış KE, Tanaçan L (2021) Improving the geopolymeric reactivity of Earth of Datça as a natural pozzolan in developing green binder. J Build Eng 41:102760. https://doi.org/10.1016/J.JOBE.2021.102760

    Article  Google Scholar 

  32. Thammarong S, Lertcumfu N, Jaita P et al (2019) The effects of replacement metakaolin with diatomite in geopolymer materials. Key Eng Mater 798:267–272. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.798.267

    Article  Google Scholar 

  33. Akhtar F, Rehman Y, Bergström L (2010) A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength. Powder Technol 201:253–257. https://doi.org/10.1016/J.POWTEC.2010.04.004

    Article  Google Scholar 

  34. İlkentapar S, Örklemez E, Üniversitesi E et al (2020) Uçucu Kül Esaslı Geopolimer Harçlara Diatomit İkamesinin Isı İletkenliğe Etkisi the effect of diatomite addition on fly ash based geopolymer mortars on thermal conductivity values. Erciyes Univ J Institue Sci Technol 36:2020

    Google Scholar 

  35. TS EN 196–1 (2016) Methods of testing cement—part:1 determination of strength. TSE

  36. TS EN 1015–3 (2000) Methods of test for mortar for masonry: Part 3. Determination of consistence of fresh mortar (by flow table). TSE, Ankara

  37. Standard T (2005) Turkish Standard Ts 2824 En 1338

  38. TSE- EN (2017) Turkish Standard 12504–4. Türk Stand 15189:

  39. de la Rilem PDR (1995) 129-MHT: test methods for mechanical properties of concrete at high emperatures. Mater Struct 28:410–414

    Google Scholar 

  40. Messina F, Colangelo F et al (2018) Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physico-mechanical properties and residual strength after exposure at elevated temperature. Compos Part B Eng 132:161–169. https://doi.org/10.1016/j.compositesb.2017.08.012

    Article  Google Scholar 

  41. Durak U, Karahan O, Uzal B et al (2021) Influence of nano SiO2 and nano CaCO3 particles on strength, workability, and microstructural properties of fly ash-based geopolymer. Struct Concr 22:E352–E367. https://doi.org/10.1002/SUCO.201900479

    Article  Google Scholar 

  42. Bilim C, Karahan O, Atiş CD, Ilkentapar S (2013) Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater Des 44:540–547. https://doi.org/10.1016/J.MATDES.2012.08.049

    Article  Google Scholar 

  43. İlkentapar S, Atiş CD, Karahan O, Görür Avşaroğlu EB (2017) Influence of duration of heat curing and extra rest period after heat curing on the strength and transport characteristic of alkali activated class F fly ash geopolymer mortar. Constr Build Mater 151:363–369. https://doi.org/10.1016/J.CONBUILDMAT.2017.06.041

    Article  Google Scholar 

  44. Whitehurst EA (1951) Soniscope tests concrete structures. J Proc 47:433–444. https://doi.org/10.14359/12004

    Article  Google Scholar 

  45. Nuaklong P, Jongvivatsakul P, Pothisiri T et al (2020) Influence of rice husk ash on mechanical properties and fire resistance of recycled aggregate high-calcium fly ash geopolymer concrete. J Clean Prod 252:119797. https://doi.org/10.1016/j.jclepro.2019.119797

    Article  Google Scholar 

  46. Lahoti M, Wong KK, Yang EH, Tan KH (2018) Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceram Int 44:5726–5734. https://doi.org/10.1016/J.CERAMINT.2017.12.226

    Article  Google Scholar 

  47. Junaid MT, Khennane A, Kayali O et al (2014) Aspects of the deformational behaviour of alkali activated fly ash concrete at elevated temperatures. Cem Concr Res 60:24–29. https://doi.org/10.1016/J.CEMCONRES.2014.01.026

    Article  Google Scholar 

  48. Kong DLY, Sanjayan JG, Sagoe-Crentsil K (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res 37:1583–1589. https://doi.org/10.1016/J.CEMCONRES.2007.08.021

    Article  Google Scholar 

  49. Khedmati M, Alanazi H, Kim Y et al (2018) Effects of Na 2 O/SiO 2 molar ratio on properties of aggregate-paste interphase in fly ash-based geopolymer mixtures through multiscale measurements. Constr Build Mater 191:564–574. https://doi.org/10.1016/j.conbuildmat.2018.10.024

    Article  Google Scholar 

  50. Xiao R, Ma Y, Jiang X et al (2020) Strength, microstructure, ef fl orescence behavior and environmental impacts of waste glass geopolymers cured at ambient temperature. J Clean Prod 252:119610. https://doi.org/10.1016/j.jclepro.2019.119610

    Article  Google Scholar 

  51. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181:35–42. https://doi.org/10.1016/J.JHAZMAT.2010.04.064

    Article  Google Scholar 

  52. Lee B, Kim G, Kim R et al (2017) Strength development properties of geopolymer paste and mortar with respect to amorphous Si/Al ratio of fly ash. Constr Build Mater 151:512–519. https://doi.org/10.1016/J.CONBUILDMAT.2017.06.078

    Article  Google Scholar 

  53. Ryu GS, Lee YB, Koh KT, Chung YS (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr Build Mater 47:409–418. https://doi.org/10.1016/J.CONBUILDMAT.2013.05.069

    Article  Google Scholar 

  54. Shao NN, Liu Z, Xu YY et al (2015) Fabrication of hollow microspheres filled fly ash geopolymer composites with excellent strength and low density. Mater Lett 161:451–454. https://doi.org/10.1016/J.MATLET.2015.09.016

    Article  Google Scholar 

Download references

Acknowledgements

This work with project code FLY-2019-948 is supported by Erciyes University Scientific Research Project Coordination Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serhan İlkentapar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özsoy, A., Örklemez, E. & İlkentapar, S. Effect of addition diatomite powder on mechanical strength, elevated temperature resistance and microstructural properties of industrial waste fly ash-based geopolymer. J Mater Cycles Waste Manag 25, 2338–2349 (2023). https://doi.org/10.1007/s10163-023-01692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-023-01692-x

Keywords

Navigation