Skip to main content

Advertisement

Log in

Potential end of life application of African star apple shell and waste toner powder as composite filler materials

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study contributes towards showing the potential end-of-life application of common wastes namely: Waste Toner powder (WTP) and African star apple shell powder (ASASP) as low cost reinforcement for polymer composites. Herein, the effect of varying weight fractions ranging from 0 to 25 wt% for ASASP and 0–10 wt% for WTP on some mechanical properties were studied. Results showed that incorporation of both waste materials into unsaturated polyester led to a reduction in flexural properties, and a significant improvement in tensile strength, Young’s modulus and hardness of polyester. For WTP-reinforced composites, WTP1 with tensile strength, flexural strength, elongation at break and hardness value of 31.4 MPa, 109.1 MPa, 5.77% and 823 HLD, respectively, exhibited the best combination of properties. Similarly, ASASP4 with tensile strength, flexural strength, elongation at break and hardness value of 28.9 MPa, 66.9 MPa, 3.016% and 703.5 HLD, respectively, exhibited the best combination of properties for ASASP-reinforced composites. Morphological analysis showed that although fine natured, with a higher tendency to agglomerate, WTP showed better interfacial bonding and lesser particle agglomeration than ASASP. These results show that utilizing these wastes as composite filler extends their life cycle and is coherent with the principles of circular economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ASASP:

African Star apple shell particulates

WTP:

Waste toner powder

LDPEW:

Low-density polyethylene waste

PP:

Polypropylene

CNSL:

Cashew nut shell resin

References

  1. de Paiva FFG, de Maria VPK, Torres GB, Dognani G, dos Santos RJ, Cabrera FC, Job AE (2019) Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 21:326–335. https://doi.org/10.1007/s10163-018-0801-y

    Article  Google Scholar 

  2. Bacarin GB, Dognani G, dos Santos RJ, Meirelles MG, Rodrigues TF, Klauck CR, Rodrigues MAS, Jahno VD, Cabrera FC, Job AE (2020) Natural rubber composites with Grits waste from cellulose industry. J Mater Cycles Waste Manag 22:1126–1139. https://doi.org/10.1007/s10163-020-01011-8

    Article  Google Scholar 

  3. Kumar A, Baredar P, Ash F (2019) Development of the composites by using industrial waste. Mater Today Proc 18:5128–5132. https://doi.org/10.1016/j.matpr.2019.07.509

    Article  Google Scholar 

  4. Roy K, Debnath SC, Bansod ND, Pongwisuthiruchte A, Wasanapiarnpong T, Potiyaraj P (2020) Possible use of gypsum waste from ceramics industry as semi-reinforcing filler in epoxidized natural rubber composites. J Mater Cycles Waste Manag 22:285–294. https://doi.org/10.1007/s10163-019-00939-w

    Article  Google Scholar 

  5. Vigneshwaran S, Uthayakumar M, Arumugaprabu V (2019) Development and sustainability of industrial waste-based red mud hybrid composites. J Clean Prod 230:862–868. https://doi.org/10.1016/j.jclepro.2019.05.131

    Article  Google Scholar 

  6. Prabu VA, Johnson RDJ, Amuthakkannan P, Manikandan V (2017) Usage of industrial wastes as particulate composite for environment management: hardness, tensile and impact studies. J Environ Chem Eng 5:1289–1301. https://doi.org/10.1016/j.jece.2017.02.007

    Article  Google Scholar 

  7. Erdogan A, Gok MS, Koç V, Günen A (2019) Friction and wear behavior of epoxy composite filled with industrial wastes. J Clean Prod J 237:1–9. https://doi.org/10.1016/j.jclepro.2019.07.063

    Article  Google Scholar 

  8. Zhou K, Gong K, Zhou Q, Zhao S, Guo H, Qian X (2020) Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. J Clean Prod 257:1–10. https://doi.org/10.1016/j.jclepro.2020.120606

    Article  Google Scholar 

  9. Nayak SK, Satapathy A (2021) Development and characterization of polymer-based composites filled with micro-sized waste marble dust. Polym Polym Compos 29:497–508. https://doi.org/10.1177/0967391120926066

    Article  Google Scholar 

  10. Okonkwo EG, Daniel-Mkpume CC, Ude SN, Onah CC, Ijomah AI, Omah AD (2019) Chicken feather fiber—African star apple leaves bio-composite: empirical study of mechanical and morphological properties. Mater Res Express 6:1–9. https://doi.org/10.1088/2053-1591/ab3f60

    Article  Google Scholar 

  11. Durowaye SI, Lawal GI, Sekunowo OI, Okonkwo EG (2019) Synthesis and characterisation of hybrid polyethylene terephthalate matrix composites reinforced with Entada Mannii fibre particles and almond shell particles. J King Saud Univ Eng Sci 31:305–313. https://doi.org/10.1016/j.jksues.2017.09.006

    Article  Google Scholar 

  12. Kuram E (2020) Rheological, mechanical and morphological properties of hybrid hazelnut (Corylus avellana L.)/walnut (Juglans regia L.) shell flour-filled acrylonitrile butadiene styrene composite. J Mater Cycles Waste Manag 22:2107–2117. https://doi.org/10.1007/s10163-020-01094-3

    Article  Google Scholar 

  13. Daniel-Mkpume CC, Ugochukwu C, Okonkwo EG, Fayomi OSI, Obiorah SM (2019) Effect of Luffa cylindrica fiber and particulate on the mechanical properties of epoxy. Int J Adv Manuf Technol 101:3439–3444. https://doi.org/10.1007/s00170-019-03422-w

    Article  Google Scholar 

  14. Aigbodion VS, Okonkwo EG, Akinlabi ET (2019) Eco-friendly polymer composite: state-of-arts , opportunities and challenge. In: Sustainable polymer composites and nanocomposite. pp 1233–1265

  15. Shivamurthy B, Murthy K, Joseph PC, Rishi K, Bhat KU, Anandhan S (2015) Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. J Mater Chem A 17:144–156. https://doi.org/10.1007/s10163-014-0235-0

    Article  Google Scholar 

  16. Sumesh KR, Kavimani V, Rajeshkumar G, Indran S, Saikrishnan G (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cycles Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  17. António J, Tadeu A, Marques B, Almeida JAS, Pinto V (2018) Application of rice husk in the development of new composite boards. Constr Build Mater 176:432–439. https://doi.org/10.1016/j.conbuildmat.2018.05.028

    Article  Google Scholar 

  18. Guna V, Ilangovan M, Rather MH, Giridharan BV, Prajwal B, Krishna KV, Venkatesh K, Reddy N (2020) Groundnut shell/rice husk agro-waste reinforced polypropylene hybrid biocomposites. J Build Eng 27:1–8. https://doi.org/10.1016/j.jobe.2019.100991

    Article  Google Scholar 

  19. Alagarsamy SV, Sagayaraj VA, Vignesh S (2015) Investigating the mechanical behaviour of coconut coir—chicken feather reinforced hybrid composite. Int J Sci Eng Technol Res 4:4215–4221

    Google Scholar 

  20. Binoj JS, Raj RE, Indran S (2018) Characterization of industrial discarded fruit wastes (Tamarindus indica L.) as potential alternate for man-made vitreous fiber in polymer composites. Process Saf Environ Prot 116:527–534. https://doi.org/10.1016/j.psep.2018.02.019

    Article  Google Scholar 

  21. Giubilini A, Sciancalepore C, Messori M, Bondioli F (2021) Valorization of oat hull fiber from agri-food industrial waste as filler for poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). J Mater Cycles Waste Manag 23:402–408. https://doi.org/10.1007/s10163-020-01104-4

    Article  Google Scholar 

  22. Okonkwo EG, Anabaraonye CN, Daniel-Mkpume C, Egoigwe SV, Okeke PE, Whyte FG, Okoani A (2020) Mechanical and thermomechanical properties of clay-Bambara nut shell polyester bio-composite. Int J Adv Manuf Technol 108:2483–2496. https://doi.org/10.1007/s00170-020-05570-w

    Article  Google Scholar 

  23. Ojha S, Raghavendra G, Acharya SK (2014) A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polym Compos 180–185. 10.1002/ pc

  24. Yordanova D, Angelova S, Dombalov I (2014) Utilisation options for waste toner powder. J Environ Sci 3:140–144

    Google Scholar 

  25. Hammani S, Barhoum A, Nagarajan S, Bechelany M (2019) Toner waste powder (twp) as a filler for polymer blends (LDPE/HIPS) for enhanced electrical conductivity. Materials (Basel) 12:1–15. https://doi.org/10.3390/ma12193062

    Article  Google Scholar 

  26. Anang MA, Oteng-Peprah M, Opoku-Boadu K (2019) Extraction and characterisation of african star apple (Chrysophyllum albidum) seed oil and the adsorptive properties of the fruit shell in Ghana. Int J Food Sci. https://doi.org/10.1155/2019/4959586

    Article  Google Scholar 

  27. Oyelade OJ, Odugbenro PO, Abioye AO, Raji NL (2005) Some physical properties of African star apple (Chrysophyllum alibidum) seeds. J Food Eng 67:435–440. https://doi.org/10.1016/j.jfoodeng.2004.05.046

    Article  Google Scholar 

  28. Yang H, Yan R, Chen H, Zheng C, Ho Lee D, Tee Liang D (2006) Investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Energy Fuels 20:388–393. https://doi.org/10.1021/ef0580117

    Article  Google Scholar 

  29. Pirayesh H, Khazaeian A, Tabarsa T (2012) The potential for using walnut (Juglans regia L.) shell as a raw material for wood-based particleboard manufacturing. Compos Part B Eng 43:3276–3280. https://doi.org/10.1016/j.compositesb.2012.02.016

    Article  Google Scholar 

  30. Bulut M, Bozkurt ÖY, Erkliğ A, Yaykaşlı H, Özbek Ö (2020) Mechanical and dynamic properties of basalt fiber-reinforced composites with nanoclay particles. Arab J Sci Eng 45:1017–1033. https://doi.org/10.1007/s13369-019-04226-6

    Article  Google Scholar 

  31. Sim J, Kang Y, Kim BJ, Park YH, Lee YC (2020) Preparation of fly ash/epoxy composites and its effects on mechanical properties. Polymers (Basel) 12:1–12. https://doi.org/10.3390/polym12010079

    Article  Google Scholar 

  32. Moreno DDP, Saron C (2017) Low-density polyethylene waste/recycled wood composites. Compos Interfaces 176:1152–1157. https://doi.org/10.1016/j.compstruct.2017.05.076

    Article  Google Scholar 

  33. Vimalanathan P, Venkateshwaran N, Santhanam V (2016) Mechanical, dynamic mechanical, and thermal analysis of Shorea robusta-dispersed polyester composite. Int J Polym Anal Charact 21:314–326. https://doi.org/10.1080/1023666X.2016.1155818

    Article  Google Scholar 

  34. Das LS, Deoghare AB, Chatterjee S (2019) Effect of dual pre-treatment on mechanical, morphological, electrical and thermal properties of rubber seed shell-reinforced epoxy composites. Arab J Sci Eng 44:845–856. https://doi.org/10.1007/s13369-018-3302-3

    Article  Google Scholar 

  35. Ahlawat V, Kajal S, Parinam A (2019) Experimental analysis of tensile, flexural, and tribological properties of walnut shell powder/polyester composites. Euro Mediterranean J Environ Integr 4:1–9. https://doi.org/10.1007/s41207-018-0085-6

    Article  Google Scholar 

  36. Saba N, Alothman OY, Almutairi Z, Jawaid M, Ghori W (2019) Date palm reinforced epoxy composites: tensile, impact and morphological properties. J Mater Res Technol 8:3959–3969. https://doi.org/10.1016/j.jmrt.2019.07.004

    Article  Google Scholar 

  37. Vignesh K, Ramasivam G, Natarajan U, Srinivasan C (2016) Optimization of process parameters to enhance the mechanical properties of bone and coir fiber reinforced polyester composites by Taguchi method. ARPN J Eng Appl Sci 11:1224–1231

    Google Scholar 

  38. Hassan SB, Aigbodion VS, Patrick SN (2012) Development of polyester/eggshell particulate composites. Tribol Ind 34:217–225

    Google Scholar 

  39. Goudar S, Jain RK, Das D (2020) Physico-mechanical properties of tamarind pod shell-based composite. Polym Compos 41:505–521. https://doi.org/10.1002/pc.25383

    Article  Google Scholar 

  40. Alsaadi M, Erkliğ A, Albu-khaleefah K (2018) Effect of pistachio shell particle content on the mechanical properties of polymer composite. Arab J Sci Eng 43:4689–4696. https://doi.org/10.1007/s13369-018-3073-x

    Article  Google Scholar 

  41. Stalin B, Nagaprasad N, Vignesh V, Ravichandran M, Rajini N, Ismail SO, Mohammad F (2020) Evaluation of mechanical, thermal and water absorption behaviors of Polyalthia longifolia seed reinforced vinyl ester composites. Carbohydr Polym 248:116748. https://doi.org/10.1016/j.carbpol.2020.116748

    Article  Google Scholar 

  42. Panneerdhass R, Gnanavelbabu A, Rajkumar K (2014) Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Eng 97:2042–2051. https://doi.org/10.1016/j.proeng.2014.12.447

    Article  Google Scholar 

  43. Kesarla H, Rohit K, Mohod A, Tanji S, Mane O, Venkatachalam G (2018) Study on tensile behavior of fly ash reinforced hybrid polymer matrix composite. Mater Today Proc 5:11922–11932. https://doi.org/10.1016/j.matpr.2018.02.166

    Article  Google Scholar 

  44. Uslu E, Gavgali M, Erdal MO, Yazman Ş, Gemi L (2021) Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study. Mater Today Commun 26:101939. https://doi.org/10.1016/j.mtcomm.2020.101939

    Article  Google Scholar 

  45. Gemi L, Yazman Ş, Uludağ M, Dispinar D, Tiryakioğlu M (2017) The effect of 0.5 wt% additions of carbon nanotubes and ceramic nanoparticles on tensile properties of epoxy-matrix composites: a comparative study. Mater Sci Nanotechnol 1:15–22. https://doi.org/10.35841/nanotechnology.1.2.15-22

    Article  Google Scholar 

  46. Togho K, Chou T-W (1996) Incremental theory of particulate reinforced composites including debonding damage. JSME Int J 39:389–397

    Google Scholar 

  47. Sawpan MA, Pickering KL, Fernyhough A (2012) Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites. Compos Part A Appl Sci Manuf 43:519–526. https://doi.org/10.1016/j.compositesa.2011.11.021

    Article  Google Scholar 

  48. Ameh AO, Isa MT, Sanusi I (2015) Effect of particle size and concentration on the mechanical properties of polyester / date palm seed particulate composites. Leonardo Electron J Pract Technol 65–78

  49. Adeosun SO, Gbenebor OP, Akpan EI, Udeme FA (2016) Influence of organic fillers on physicochemical and mechanical properties of unsaturated polyester composites. Arab J Sci Eng 41:4153–4159. https://doi.org/10.1007/s13369-016-2120-8

    Article  Google Scholar 

  50. Pirayesh H, Khanjanzadeh H, Salari A (2013) Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard. Compos Part B Eng 45:858–863. https://doi.org/10.1016/j.compositesb.2012.05.008

    Article  Google Scholar 

  51. Lopez YM, Paes BJ, Gustave D, Gonçalves FG, Mendez FC, Nantet ACT (2020) Production of wood-plastic composites using cedrela odorata sawdust waste and recycled thermoplastics mixture from post-consumer products—a sustainable approach for cleaner production in Cuba. J Clean Prod 244:1–10. https://doi.org/10.1016/j.jclepro.2019.118723

    Article  Google Scholar 

  52. Sari NH, Suteja S, Fudholi A, Zamzuriadi A, Sulistyowati ED, Pandiatmi P, Sinarep S, Zainuri A (2021) Morphology and mechanical properties of coconut shell powder-filled untreated cornhusk fibre-unsaturated polyester composites. Polymer (Guildf) 222:123657. https://doi.org/10.1016/j.polymer.2021.123657

    Article  Google Scholar 

  53. Büyükkaya K, Güler B, Koru M (2021) Investigation of the thermal and mechanical properties of organic waste reinforced polyester composites. Iran J Sci Technol Trans Civ Eng 45:757–766. https://doi.org/10.1007/s40996-020-00517-3

    Article  Google Scholar 

  54. Barczewski M, Sałasińska K, Szulc J (2019) Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym Test 75:1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017

    Article  Google Scholar 

  55. Sahari J, Maleque MA (2016) Mechanical properties of oil palm shell composites. Int J Polym Sci 2016:1–7. https://doi.org/10.1155/2016/7457506

    Article  Google Scholar 

  56. Ansari MNM, Ismail H (2009) Effect of compatibilisers on mechanical properties of feldspar/polypropylene composites. Polym Plast Technol Eng 48:1295–1303. https://doi.org/10.1080/03602550903204162

    Article  Google Scholar 

  57. Ashori A (2013) Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. J Compos Mater 47:149–154. https://doi.org/10.1177/0021998312437234

    Article  Google Scholar 

  58. Mesquita ADL, Barrero NG, Fiorelli J, Christoforo AL, Guerreiro De Faria JL, Lahr AFR (2018) Eco-particleboard manufactured from chemically treated fibrous vascular tissue of acai (Euterpe oleracea Mart.) Fruit: a new alternative for the particleboard industry with its potential application in civil construction and furniture. Ind Crop Prod 112:644–651. https://doi.org/10.1016/j.indcrop.2017.12.074

    Article  Google Scholar 

  59. Nicolao ES, Leiva P, Chalapud MC, Ruseckaite RA, Ciannamea EM, Stefani PM (2020) Flexural and tensile properties of biobased rice husk-jute-soybean protein particleboards. J Build Eng 30:101261. https://doi.org/10.1016/j.jobe.2020.101261

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research and authorship of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emenike George Okonkwo.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Ethical statement

This work is the authors’ original work and has neither been published elsewhere nor is under consideration to be published.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel-Mkpume, C.C., Ahaiwe, R.C., Ifenatuorah, C.L. et al. Potential end of life application of African star apple shell and waste toner powder as composite filler materials. J Mater Cycles Waste Manag 24, 680–691 (2022). https://doi.org/10.1007/s10163-022-01355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01355-3

Keywords

Navigation