Skip to main content

Advertisement

Log in

High-rate anaerobic digestion of sewage sludge by membrane separation solubilization coupled with UASB process

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Conventional anaerobic digestion (AD) process was often slow and thus required a large digestion tank. Upflow anaerobic sludge blanket (UASB) reactor is an AD technology intended mainly to treat wastewater with a short hydraulic retention time (HRT). However, the potential of this reactor was often limited when treating wet solid biomass. In this study, the performance of anaerobic submerged membrane bioreactor (AnMBR) was investigated under acidic condition by varying the hydraulic retention time (HRT), from 1.5 d to 2.5 d, and sludge retention time (SRT), from 6 to 12 d, of a mixture of primary and excess sludge. The acidic permeate was thereafter utilized in a UASB reactor at an HRT of 0.5 d. The results showed a COD reduction between 26 and 36% in the AnMBR, while the average COD removal rate was 83% in the UASB reactor. The average pH in the AnMBR was 5.40 and the transmembrane pressure was below 45 mbar throughout the experimental period. The average methane yield in the UASB reactor was 0.25 L/gCOD. These results implied that operating AnMBR under acidic condition is an alternative process to minimize membrane fouling and increase the energy footprint of an AD system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19:704–741. https://doi.org/10.1016/j.rser.2012.11.056

    Article  Google Scholar 

  2. Goddek S, Delaide BPL, Joyce A, Wuertz S, Jijakli MH, Gross A, Eding EH, Bläser I, Reuter M, Keizer LCP, Morgenstern R, Körner O, Verreth J, Keesman KJ (2018) Nutrient mineralization and organic matter reduction performance of RAS- based sludge in sequential UASB-EGSB reactors. Aquac Eng 83:10–19. https://doi.org/10.1016/j.aquaeng.2018.07.003

    Article  Google Scholar 

  3. Graaff MSD, Temmink H, Zeeman G, Buisman CJN (2010) Anaerobic treatment of concentrated black water in a UASB reactor at a short HRT. Water 2:101–119. https://doi.org/10.3390/w2010101

    Article  Google Scholar 

  4. Heffernan B, Lier JBV, Lubbe JVD (2011) Performance review of large scale up-flow anaerobic sludge blanket sewage treatment plants. Water Sci Technol 63:100–107. https://doi.org/10.2166/wst.2011.017

    Article  Google Scholar 

  5. Hu YF, Yang CZ, Dan JF, Pu WH, Yang JK (2017) Modeling of expanded granular sludge bed reactor using artificial neural network. J Environ Chem Eng 5:2142–2150. https://doi.org/10.1016/j.jece.2017.04.007

    Article  Google Scholar 

  6. Batstone DJ, Hülsen T, Mehta CM, Keller J (2015) Platforms for energy and nutrient recovery from domestic wastewater: a review. Chemosphere 140:2–11. https://doi.org/10.1016/j.chemosphere.2014.10.021

    Article  Google Scholar 

  7. Shin C, Bae J (2018) Current status of the pilot-scale anaerobic membrane bioreactor treatments of domestic wastewaters: a critical review. Bioresour Technol 247:1038–1046. https://doi.org/10.1016/j.biortech.2017.09.002

    Article  Google Scholar 

  8. Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination 314:169–188. https://doi.org/10.1016/j.desal.2013.01.019

    Article  Google Scholar 

  9. Vinardell S, Astals S, Peces M, Cardete MA, Fernandez I, Mata-Alvarez J, Dosta J (2020) Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: a 2020 updated review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.109936

    Article  Google Scholar 

  10. Pretel R, Robles A, Ruano MV, Seco A, Ferrer J (2014) The operating cost of an anaerobic membrane bioreactor (AnMBR) treating sulphate-rich urban wastewater. Sep Purif Technol 126:30–38. https://doi.org/10.1016/j.seppur.2014.02.013

    Article  Google Scholar 

  11. Wang KM, Cingolani D, Eusebi AL, Soares A, Jefferson B, McAdam EJ (2018) Identification of gas sparging regimes for granular anaerobic membrane bioreactor to enable energy neutral municipal wastewater treatment. J Memb Sci 555:125–133. https://doi.org/10.1016/j.memsci.2018.03.032

    Article  Google Scholar 

  12. Smith AL, Stadler LB, Cao L, Love NG, Raskin L, Skerlos SJ (2014) Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ Sci Technol 48:5972–5981. https://doi.org/10.1021/es5006169

    Article  Google Scholar 

  13. Gouveia J, Plaza F, Garralon G, Fdz-polanco F, Peña M (2015) A novel configuration for an anaerobic submerged membrane bioreactor (AnSMBR). Long-term treatment of municipal wastewater under psychrophilic conditions. Bioresour Technol 198:510–519. https://doi.org/10.1016/j.biortech.2015.09.039

    Article  Google Scholar 

  14. Chen C, Guo W, Hao H, Lee D, Tung K, Jin P, Wang J, Wu Y (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renew Energy 98:120–134. https://doi.org/10.1016/j.renene.2016.03.095

    Article  Google Scholar 

  15. Lettinga G, Man AD, Last ARMVD, Wiegant W, Knippenberg KV, Frijns J, Buuren JCLV (1993) Anaerobic treatment of domestic sewage and wastewater. Water Sci Technol 27:67–73. https://doi.org/10.2166/wst.1993.0179

    Article  Google Scholar 

  16. Bandara WMKRTW, Satoh H, Sasakawa M, Nakahara Y, Takahashi M, Okabe S (2011) Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res 45:3533–3540. https://doi.org/10.1016/j.watres.2011.04.030

    Article  Google Scholar 

  17. Hatamoto M, Yamamoto H, Kindaichi T, Ozaki N (2010) Biological oxidation of dissolved methane in effluents from anaerobic reactors using a down-flow hanging sponge reactor. Water Res 44:1409–1418. https://doi.org/10.1016/j.watres.2009.11.021

    Article  Google Scholar 

  18. Morita J, Higashi M, Shimada N, Kitagawa T (2015) Membrane bioreactor pilot machine test for a newly developed membrane fabricated from chlorinated poly (vinyl chloride) and non-woven poly (ethyleneterephthalate) and its anti-fouling properties. J Water Process Eng 8:160–170. https://doi.org/10.1016/j.jwpe.2015.10.001

    Article  Google Scholar 

  19. Higashi M, Morita J, Shimada N, Kitagawa T (2016) Long-term-hydrophilic flat-sheet microfiltration membrane made from chlorinated poly (vinyl chloride). J Membr Sci 500:180–189. https://doi.org/10.1016/j.memsci.2015.11.032

    Article  Google Scholar 

  20. Han D, Lee C, Chang SW, Kim D (2017) Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion. Bioresour Technol 245:1162–1167. https://doi.org/10.1016/j.biortech.2017.08.108

    Article  Google Scholar 

  21. Le-clech P, Chen V, Fane TAG (2006) Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci 284:17–53. https://doi.org/10.1016/j.memsci.2006.08.019

    Article  Google Scholar 

  22. Meng F, Chae S, Drews A, Kraume M, Shin H (2009) Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res 43:1489–1512. https://doi.org/10.1016/j.watres.2008.12.044

    Article  Google Scholar 

  23. Zhao F, Chu H, Yu Z, Jiang S, Zhao X, Zhou X, Zhang Y (2017) The filtration and fouling performance of membranes with different pore sizes in algae harvesting. Sci Total Environ 587–588:87–93. https://doi.org/10.1016/j.scitotenv.2017.02.035

    Article  Google Scholar 

  24. Bae J, Shin C, Lee E, Kim J, Mccarty PL (2014) Anaerobic treatment of low-strength wastewater: a comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresour Technol 165:75–80. https://doi.org/10.1016/j.biortech.2014.02.065

    Article  Google Scholar 

  25. Jeison D, Van-Lier JB (2007) Thermophilic treatment of acidified and partially acidified wastewater using an anaerobic submerged MBR: factors affecting long-term operational flux. Water Res 41:3868–3879. https://doi.org/10.1016/j.watres.2007.06.013

    Article  Google Scholar 

  26. Martinez-sosa D, Helmreich B, Netter T, Paris S, Bischof F, Horn H (2011) Anaerobic submerged membrane bioreactor (AnSMBR) for municipal wastewater treatment under mesophilic and psychrophilic temperature conditions. Bioresour Technol 102:10377–10385. https://doi.org/10.1016/j.biortech.2011.09.012

    Article  Google Scholar 

  27. Mota VT, Santos FS, Amaral MCS (2013) Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance. Bioresour Technol 146:494–503. https://doi.org/10.1016/j.biortech.2013.07.110

    Article  Google Scholar 

  28. Parawira W, Murto M, Zvauya R, Mattiasson B (2006) Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renew Energy 31:893–903. https://doi.org/10.1016/j.renene.2005.05.013

    Article  Google Scholar 

  29. Magdalena JA, Greses S, Gonzalez-Fernandez C (2020) Anaerobic degradation of protein-rich biomass in an UASB reactor: organic loading rate effect on product output and microbial communities dynamics. J Environ Manage 274:111201. https://doi.org/10.1016/j.jenvman.2020.111201

    Article  Google Scholar 

  30. Saddoud A, Hassaïri I, Sayadi S (2007) Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour Technol 98:2102–2108. https://doi.org/10.1016/j.biortech.2006.08.013

    Article  Google Scholar 

  31. Ince O (1998) Performance of a two-stage anaerobic digestion system when treating dairy wastewater. Water Res 32:2707–2713. https://doi.org/10.1016/S0043-1354(98)00036-0

    Article  Google Scholar 

  32. Xu S, Selvam A, Wong JWC (2014) Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Manag 34:363–369. https://doi.org/10.1016/j.wasman.2013.10.038

    Article  Google Scholar 

  33. Komemoto K, Lim YG, Nagao N, Onoue Y, Niwa C, Toda T (2009) Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manag 29:2950–2955. https://doi.org/10.1016/j.wasman.2009.07.011

    Article  Google Scholar 

  34. Lü F, Shao LM, Bru V, Godon JJ, He PJ (2009) Synergetic effect of pH and biochemical components on bacterial diversity during mesophilic anaerobic fermentation of biomass-origin waste. J Appl Microbiol 106:580–591. https://doi.org/10.1111/j.1365-2672.2008.04029.x

    Article  Google Scholar 

  35. Wijekoon KC, Visvanathan C, Abeynayaka A (2011) Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresour Technol 102:5353–5360. https://doi.org/10.1016/j.biortech.2010.12.081

    Article  Google Scholar 

  36. Inanc B, Matsui S, Ide S (1999) Propionic acid accumulation in anaerobic digestion of carbohydrates: an investigation on the role of hydrogen gas. Water Sci Technol 40:93–100. https://doi.org/10.1016/S0273-1223(99)00368-6

    Article  Google Scholar 

  37. Ferrari F, Luís J, Rodriguez-roda I, Pijuan M (2019) Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining. Sci Total Environ 670:993–1000. https://doi.org/10.1016/j.scitotenv.2019.03.218

    Article  Google Scholar 

  38. Andriamanohiarisoamanana FJ, Saikawa A, Kan T, Qi G (2018) Semi-continuous anaerobic co-digestion of dairy manure, meat and bone meal and crude glycerol: process performance and digestate valorization. Renew Energy 128:1–8. https://doi.org/10.1016/j.renene.2018.05.056

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Toyobo Co., Ltd. for providing microfiltration membranes on the experiments. This work was partially supported by the Research grants for waste and marine water environment conservation from Osaka Bay Regional Offshore Environmental Improvement Center.

Funding

Osaka bay regional offshore environmental improvement center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Yoshida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, G., Seyama, T., Andriamanohiarisoamanana, F.J. et al. High-rate anaerobic digestion of sewage sludge by membrane separation solubilization coupled with UASB process. J Mater Cycles Waste Manag 24, 402–409 (2022). https://doi.org/10.1007/s10163-021-01331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01331-3

Keywords

Navigation