Skip to main content

Advertisement

Log in

Effect of maleic acid and pH on the preparation of α-calcium sulfate hemihydrate from phosphogypsum in Mg(NO3)2 solution

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Phosphogypsum (PG) is a by-product of the wet-process phosphoric acid process, which causes serious environmental issues. In this work, PG was taken as raw material to prepare α-calcium sulfate hemihydrate (α-CSH) at atmospheric pressure using Mg(NO3)2 solution, which is an environmentally friendly chlorine-free salt solution. The crystallization water content and mechanical strength of α-CSH were detected, meanwhile the relationships between structure, morphology and properties were discussed deeply by DSC, XRD, SEM, FTIR and XPS characterization techniques. The results showed that with the increase of maleic acid (MA) concentration and slurry pH, the dehydration rate of PG reduced, causing the changing of α-CSH crystal from elongated prism to short column. MA is adsorbed on the surface of α-CSH by the complexation of carboxyl (COO) and Ca atom, adjusting the growth of crystal. Well crystallized α-CSH can be successfully prepared by the hydrothermal method in 25 wt% Mg(NO3)2 solution, with a reaction time of 6.0 h at 95 °C, and the average aspect ratio is 1.24. The corresponding sample paste has the 3d bending/compressive strength of 8.9/36.8 MPa, displaying better properties than commercial product. This chlorine-free solution method provides an alternative technology for preparing α-CSH with controllable morphology and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang J (2020) Utilization effects and environmental risks of phosphogypsum in agriculture: a review. J Clean Prod 276:123337. https://doi.org/10.1016/j.jclepro.2020.123337

    Article  Google Scholar 

  2. Zhou J, Gao H, Shu Z, Wang Y, Yan C (2012) Utilization of waste phosphogypsum to prepare non-fired bricks by a novel hydration-recrystallization process. Constr Build Mater 34:114–119. https://doi.org/10.1016/j.conbuildmat.2012.02.045

    Article  Google Scholar 

  3. Rashad AM (2017) Phosphogypsum as a construction material. J Clean Prod 166:732–743. https://doi.org/10.1016/j.jclepro.2017.08.049

    Article  Google Scholar 

  4. Rashad AM (2015) Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles. J Clean Prod 87:717–725. https://doi.org/10.1016/j.jclepro.2014.09.080

    Article  Google Scholar 

  5. Yang L, Cao J, Li C (2016) Enhancing the hydration reactivity of hemi-hydrate phosphogypsum through a morphology-controlled preparation technology. Chinese J Chem Eng 24(9):1298–1305. https://doi.org/10.1016/j.cjche.2016.04.006

    Article  Google Scholar 

  6. Singh M (2005) Role of phosphogypsum impurities on strength and microstructure of selenite plaster. Constr Build Mater 19:480–546. https://doi.org/10.1016/j.conbuildmat.2004.07.010

    Article  Google Scholar 

  7. Yang L, Zhang Y, Yan Y (2016) Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar. J Clean Prod 127:204–213. https://doi.org/10.1016/j.jclepro.2016.04.054

    Article  Google Scholar 

  8. Othman I, Al-Masri MS (2007) Impact of phosphate industry on the environment: a case study. Appl Radiat Isotopes 65(1):131–141. https://doi.org/10.1016/j.apradiso.2006.06.014

    Article  Google Scholar 

  9. Ennaciri Y, Bettach M, El Alaoui-Belghiti H (2020) Conversion of Moroccan phosphogypsum waste into nano-calcium fluoride and sodium hydrogen sulfate monohydrate. J Mater Cycles Waste Manage 22(6):2039–2047. https://doi.org/10.1007/s10163-020-01088-1

    Article  Google Scholar 

  10. Bouargane B, Marrouche A, El Issiouy S, Biyoune MG, Mabrouk A, Atbir A, Bachar A, Bellajrou R, Boukbir L, Bakiz B (2019) Recovery of Ca(OH)2, CaCO3, and Na2SO4 from Moroccan phosphogypsum waste. J Mater Cycles Waste Manage 21(6):1563–1571. https://doi.org/10.1007/s10163-019-00910-9

    Article  Google Scholar 

  11. Braiek A, Karkri M, Adili A, Ibos L, Ben Nasrallah S (2017) Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build 140:268–279. https://doi.org/10.1016/j.enbuild.2017.02.001

    Article  Google Scholar 

  12. Mymrin V, Aibuldinov EK, Avanci MA, Alekseev K, Argenda MA, Carvalho KQ, Erbs A, Catai RE (2021) Material cycle realization by hazardous phosphogypsum waste, ferrous slag, and lime production waste application to produce sustainable construction materials. J Mater Cycles Waste 23(2):591–603. https://doi.org/10.1007/s10163-020-01147-7

    Article  Google Scholar 

  13. Wang L, Yu K, Li J, Tsang DCW, Poon CS, Yoo J, Baek K, Ding S, Hou D, Dai J (2018) Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chem Eng J 351:418–427. https://doi.org/10.1016/j.cej.2018.06.118

    Article  Google Scholar 

  14. Ennaciri Y, Alaoui-Belghiti HE, Bettach M (2019) Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum. J Market Res 8(3):2586–2596. https://doi.org/10.1016/j.jmrt.2019.02.013

    Article  Google Scholar 

  15. Rosales J, Pérez SM, Cabrera M, Gázquez MJ, Bolivar JP, de Brito J, Agrela F (2020) Treated phosphogypsum as an alternative set regulator and mineral addition in cement production. J Clean Prod 244:118752. https://doi.org/10.1016/j.jclepro.2019.118752

    Article  Google Scholar 

  16. Guan Q, Tang H, Sun W, Hu Y, Yin Z (2017) Insight into influence of glycerol on preparing α-CaSO4·1/2H2O from flue gas desulfurization gypsum in glycerol−water solutions with succinic acid and NaCl. Ind Eng Chem Res 56:9831–9838. https://doi.org/10.1021/acs.iecr.7b02067

    Article  Google Scholar 

  17. Singh NB, Middendorf B (2007) Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Prog Cryst Growth Ch 53(1):57–77. https://doi.org/10.1016/j.pcrysgrow.2007.01.002

    Article  Google Scholar 

  18. Ma B, Lu W, Su Y, Li Y, Gao C, He X (2018) Synthesis of α-hemihydrate gypsum from cleaner phosphogypsum. J Clean Prod 195:396–405. https://doi.org/10.1016/j.jclepro.2018.05.228

    Article  Google Scholar 

  19. Kong B, Guan B, Yates M, Wu Z (2012) Control of α-calcium sulfate hemihydrate morphology using reverse microemulsions. Langmuir 28(40):14137–14142. https://doi.org/10.1021/la302459z

    Article  Google Scholar 

  20. Li F, Liu J, Yang G, Pan Z, Ni X, Xu H, Huang Q (2013) Effect of pH and succinic acid on the morphology of α-calcium sulfate hemihydrate synthesized by a salt solution method. J Cryst Growth 374:31–36. https://doi.org/10.1016/j.jcrysgro.2013.03.042

    Article  Google Scholar 

  21. Zürz A, Odler I, Thiemann F, Berghöfer K (1991) Autoclave-free formation of α-hemihydrate gypsum. J Am Ceram Soc 74(5):1117–1124. https://doi.org/10.1111/j.1151-2916.1991.tb04351.x

    Article  Google Scholar 

  22. Wang W, Zeng D, Zhou H, Wu X, Yin X (2015) Solubility isotherms of gypsum, hemihydrate, and anhydrite in the ternary systems CaSO4 + MSO4 + H2O (M = Mn Co, Ni, Cu, Zn) at T=298.1 K to 373.1 K. J Chem Eng Data 60(10):3024–3032. https://doi.org/10.1021/acs.jced.5b00454

    Article  Google Scholar 

  23. Shen L, Sippola H, Li X, Lindberg D, Taskinen P (2019) Thermodynamic modeling of calcium sulfate hydrates in the CaSO4–H2O system from 273.15 to 473.15 K with extension to 548.15 K. J Chem Eng Data 64(6):2697–2709. https://doi.org/10.1021/acs.jced.9b00112

    Article  Google Scholar 

  24. Guan B, Yang L, Wu Z, Shen Z, Ma X, Ye Q (2009) Preparation of α-calcium sulfate hemihydrate from FGD gypsum in K, Mg-containing concentrated CaCl2 solution under mild conditions. Fuel 88(7):1286–1293. https://doi.org/10.1016/j.fuel.2009.01.004

    Article  Google Scholar 

  25. Yang L, Wu Z, Guan B, Fu H, Ye Q (2009) Growth rate of a-calcium sulfate hemihydrate in K-Ca–Mg–Cl–H2O systems at elevated temperature. J Cryst Growth 311:4518–4524. https://doi.org/10.1016/j.jcrysgro.2009.08.013

    Article  Google Scholar 

  26. Ru X, Ma B, Huang J, Huang Y (2012) Phosphogypsum transition to α-calcium sulfate hemihydrate in the presence of omongwaite in NaCl solutions under atmospheric pressure. J Am Ceram Soc 95(11):3478–3482. https://doi.org/10.1111/j.1551-2916.2012.05429.x

    Article  Google Scholar 

  27. Yang M, Deyu C, Aiwen W (2019) Effects of phosphorus impurities on the preparation of α-calcium sulfate hemihydrate from waste phosphogypsum with the salt solution method under atmospheric pressure. CrystEngComm 21(16):2631–2640. https://doi.org/10.1039/C9CE00140A

    Article  Google Scholar 

  28. Sun X, Zhang G, Cui P (2019) Aspect ratio-controlled preparation of α-CaSO4·0.5H2O from phosphogypsum in potassium tartrate aqueous solution. Rsc Adv 9(38):21601–21607. https://doi.org/10.1039/C9RA03569A

    Article  Google Scholar 

  29. Li X, Zhang Q (2020) Effect of molecular structure of organic acids on the crystal habit of α-CaSO4·0.5H2O from phosphogypsum. Crystals 10(1):24. https://doi.org/10.3390/cryst10010024

    Article  Google Scholar 

  30. Duan Z, Li J, Li T, Zheng S, Han W, Geng Q, Guo H (2017) Influence of crystal modifier on the preparation of α-hemihydrate gypsum from phosphogypsum. Constr Build Mater 133:323–329. https://doi.org/10.1016/j.conbuildmat.2016.12.060

    Article  Google Scholar 

  31. Guan B, Shen Z, Wu Z, Yang L, Ma X (2008) Effect of pH on the preparation of α-calcium sulfate hemihydrate from FGD gypsum with the hydrothermal method. J Am Ceram Soc 91(12):3835–3840. https://doi.org/10.1111/j.1551-2916.2008.02729.x

    Article  Google Scholar 

  32. Lu W, Ma B, Su Y, He X, Jin Z, Qi H (2019) Preparation of α-hemihydrate gypsum from phosphogypsum in recycling CaCl2 solution. Constr Build Mater 214:399–412. https://doi.org/10.1016/j.conbuildmat.2019.04.148

    Article  Google Scholar 

  33. Guan B, Kong B, Fu H, Yu J, Jiang G, Yang L (2012) Pilot scale preparation of α-calcium sulfate hemihydrate from FGD gypsum in Ca–K–Mg aqueous solution under atmospheric pressure. Fuel 98:48–54. https://doi.org/10.1016/j.fuel.2012.03.032

    Article  Google Scholar 

  34. Guan B, Yang L, Fu H, Kong B, Li T, Yang L (2011) α-calcium sulfate hemihydrate preparation from FGD gypsum in recycling mixed salt solutions. Chem Eng J 174(1):296–303. https://doi.org/10.1016/j.cej.2011.09.033

    Article  Google Scholar 

  35. Liu S, Sun H, Sun L, Fan H (2012) Effects of pH and Cl concentration on corrosion behavior of the galvanized steel in simulated rust layer solution. Corros Sci 65:520–527. https://doi.org/10.1016/j.corsci.2012.08.056

    Article  Google Scholar 

  36. Jiang G, Wang H, Chen Q, Zhang X, Wu Z, Guan B (2016) Preparation of alpha-calcium sulfate hemihydrate from FGD gypsum in chloride-free Ca(NO3)2 solution under mild conditions. Fuel 174:235–241. https://doi.org/10.1016/j.fuel.2016.01.073

    Article  Google Scholar 

  37. Singh M (2002) Treating waste phosphogypsum for cement and plaster manufacture. Cem Concr Res 32(7):1033–1038. https://doi.org/10.1016/s0008-8846(02)00723-8

    Article  Google Scholar 

  38. Feldmann T, Demopoulos GP (2012) Phase transformation kinetics of calcium sulfate phases in strong CaCl2-HCl solutions. Hydrometallurgy 129–130:126–134. https://doi.org/10.1016/j.hydromet.2012.08.015

    Article  Google Scholar 

  39. Fleck WEP, Jones MH, Kuntze RA, Mcadie HG (1960) The differential thermal analysis of natural and synthetic hydrates of calcium sulfate. Can J Chem 38(6):936–943. https://doi.org/10.1139/v60-131

    Article  Google Scholar 

  40. Wu X, Wang K, Xiong Z, Ye X (2013) Solubility of α-calcium sulfate hemihydrate in Ca–Mg–K chloride salt solution at (353.0 to 371.0) K. J Chem Eng Data 58(1):48–54. https://doi.org/10.1021/je300751h

    Article  Google Scholar 

  41. Mi Y, Chen D, He Y, Wang S (2018) Morphology-controlled preparation of α-calcium sulfate hemihydrate from phosphogypsum by semi-liquid method. Cryst Res Technol 53(1):1700162. https://doi.org/10.1002/crat.201700162

    Article  Google Scholar 

  42. Li X, Zhang Q, Shen Z, Li L, Li X, Mao S (2019) L-aspartic acid: a crystal modifier for preparation of hemihydrate from phosphogypsum in CaCl2 solution. J Cryst Growth 511:48–55. https://doi.org/10.1016/j.jcrysgro.2019.01.027

    Article  Google Scholar 

  43. Mandal PK, Mandal TK (2002) Anion water in gypsum (CaSO4·2H2O) and hemihydrate (CaSO4·1/2H2O). Cem Concr Res 32(2):313–316. https://doi.org/10.1016/S0008-8846(01)00675-5

    Article  Google Scholar 

  44. Mao J, Jiang G, Chen Q, Guan B (2014) Influences of citric acid on the metastability of α-calcium sulfate hemihydrate in CaCl2 solution. Colloids Surf A Physicochem Eng Asp 443:265–271. https://doi.org/10.1016/j.colsurfa.2013.11.023

    Article  Google Scholar 

  45. Fu H, Huang J, Yin L, Yu J, Lou W, Jiang G (2017) Retarding effect of impurities on the transformation kinetics of FGD gypsum to α-calcium sulfate hemihydrate under atmospheric and hydrothermal conditions. Fuel 203:445–451. https://doi.org/10.1016/j.fuel.2017.04.143

    Article  Google Scholar 

  46. Tan H, Dong F (2017) Morphological regulation of calcium sulfate hemihydrate from phosphogypsum. Materwiss Werksttech 48(11):1191–1196. https://doi.org/10.1002/mawe.201600746

    Article  Google Scholar 

  47. Jiang G, Chen Q, Jia C, Zhang S, Wu Z, Guan B (2015) Controlled synthesis of monodisperse α-calcium sulfate hemihydrate nanoellipsoids with a porous structure. Phys Chem Chem Phys 17(17):11509–11515. https://doi.org/10.1039/c5cp00804b

    Article  Google Scholar 

  48. Ouyang J, Zheng H, Deng S (2006) Simultaneous formation of calcium oxalate (mono-, di-, and trihydrate) induced by potassium tartrate in gelatinous system. J Cryst Growth 293(1):118–123. https://doi.org/10.1016/j.jcrysgro.2006.05.008

    Article  Google Scholar 

Download references

Acknowledgements

The financial support of the National Science Foundation of China (No. 21576246), Geological Survey Project (DD20190590) and Program for Innovative Research Team (in Science and Technology) in University of Henan Province (19IRTSTHN028) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Jianwei Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, Y., Xing, D. et al. Effect of maleic acid and pH on the preparation of α-calcium sulfate hemihydrate from phosphogypsum in Mg(NO3)2 solution. J Mater Cycles Waste Manag 24, 143–154 (2022). https://doi.org/10.1007/s10163-021-01304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01304-6

Keywords

Navigation