Skip to main content
Log in

Life cycle assessment of upflow anaerobic sludge blanket sludge management and activated sludge systems aiming energy use in the municipality of Itajubá, Minas Gerais, Brazil

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study aimed to carry out the Life Cycle Analysis (LCA) targeting to decide the better management system for sludge from both Activated Sludge Process (ASP) and from Upflow Anaerobic Sludge Blanket (UASB). Using the SimaPro® software, three post-use scenarios were applied to this process for each type of sludge: Scenario A, which consisted of the option of disposing of UASB sludge in a sanitary landfill; Scenario B, in anaerobic digestion (AD) with the generation of biogas and electricity and use of digested sludge; and Scenario C, the use of UASB sludge as an agricultural fertilizer. Besides, we carried out the analysis of heavy metals in the sludge before and after the AD using the Scanning Electron Microscopy. The elements found with a marked presence in the treatment of UASB and ASP sludge samples, before and after AD, were, among others: Oxygen, Carbon, Aluminum, Silicon, and Iron. The energy avoided for UASB sludge is 0.0502 MJ. For activated sludge, it is 0.00173 MJ. The use of activated sludge as an agricultural fertilizer (Scenario C) presented the best performance in eight of the eleven categories due to the presence of products avoided in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Silva SMCP, Fernandes F, Soccol VT, Morita DM (2014) Main contaminants of sludge (Principais Contaminantes do lodo). In: Andreoli CV, von Sperling M, Fernandes F (eds) Sewage sludge: treatment and final disposal (Lodo de esgotos: tratamento e disposição final), 2nd ed., Belo Horizonte: Ed. UFMG, p 444. ISBN: 978-85-423-0085-7

  2. Ellen Macarthur Foundation (2015) Towards a circular economy: business rationale for an accelerated transition. p 20

  3. Associação Brasileira De Normas Técnicas - ABNT (2001) NBR ISO 14040: Gestão ambiental—Avaliação do ciclo de vida—Princípios e estrutura. ABNT, Rio de Janeiro

    Google Scholar 

  4. Zhu J, Kang S, Xie Y et al (2013) Preliminary environmental impact assessment of PFOS waste treatment in a lab-scale batch subcritical water decomposition operation. J Mater Cycles Waste Manag 15:489–502. https://doi.org/10.1007/s10163-013-0162-5

    Article  Google Scholar 

  5. Usapein P, Chavalparit O (2017) Life cycle assessment of bio-sludge for disposal with different alternative waste management scenarios: a case study of an olefin factory in Thailand. J Mater Cycles Waste Manag 19:545–559. https://doi.org/10.1007/s10163-015-0385-8

    Article  Google Scholar 

  6. Padeyanda Y, Jang YC, Ko Y et al (2016) Evaluation of environmental impacts of food waste management by material flow analysis (MFA) and life cycle assessment (LCA). J Mater Cycles Waste Manag 18:493–508. https://doi.org/10.1007/s10163-016-0510-3

    Article  Google Scholar 

  7. Yi S, Jang YC (2018) Life cycle assessment of solid refuse fuel production from MSW in Korea. J Mater Cycles Waste Manag 20:19–42. https://doi.org/10.1007/s10163-016-0541-9

    Article  Google Scholar 

  8. Yu Q, Li H (2021) Life cycle environmental performance of two restaurant food waste management strategies at Shenzhen, China. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01157-5

    Article  Google Scholar 

  9. Chi Y, Dong J, Tang Y et al (2015) Life cycle assessment of municipal solid waste source-separated collection and integrated waste management systems in Hangzhou, China. J Mater Cycles Waste Manag 17:695–706. https://doi.org/10.1007/s10163-014-0300-8

    Article  Google Scholar 

  10. Cartes J, Neumann P, Hospido A et al (2018) Life cycle assessment of management alternatives for sludge from sewage treatment plants in Chile: does advanced anaerobic digestion improve environmental performance compared to current practices? J Mater Cycles Waste Manag 20:1530–1540. https://doi.org/10.1007/s10163-018-0714-9

    Article  Google Scholar 

  11. Isam A, Jianpeng Z (2019) Handling uncertainties inherited in life cycle inventory and life cycle impact assessment method for improved life cycle assessment of wastewater sludge treatment. Heliyon 5(11):2793. https://doi.org/10.1016/j.heliyon.2019.e02793 (ISSN 2405-8440)

    Article  Google Scholar 

  12. Marianna G, Laura F, Ivet F (2017) Life cycle assessment of wastewater treatment systems for small communities: activated sludge, constructed wetlands and high rate algal ponds. J Cleaner Prod 161:211–219. https://doi.org/10.1016/j.jclepro.2017.05.116

    Article  Google Scholar 

  13. Brockmann D, Gérand Y, Park C, Milferstedt K, Hélias A, Hamelin J (2021) Wastewater treatment using oxygenic photogranule-based process has lower environmental impact than conventional activated sludge process. Biores Technol 319:124204. https://doi.org/10.1016/j.biortech.2020.124204 (ISSN 0960-8524)

    Article  Google Scholar 

  14. Singh AD, Upadhyay A, Shrivastava S, Vivekanand V (2020) Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour Technol 309:123373. https://doi.org/10.1016/j.biortech.2020.123373 (ISSN 0960-8524)

    Article  Google Scholar 

  15. Resende JD, Nolasco MA, Pacca SA (2019) Life cycle assessment and costing of wastewater treatment systems coupled to constructed wetlands. Resour Conserv Recycl 148:170–177. https://doi.org/10.1016/j.resconrec.2019.04.034 (ISSN 0921-3449)

    Article  Google Scholar 

  16. Lutterbeck CA, Kist LT, Lopez DR, Zerwes FV, Machado ÊL (2017) Life cycle assessment of integrated wastewater treatment systems with constructed wetlands in rural areas. J Clean Prod 148:527–536. https://doi.org/10.1016/j.jclepro.2017.02.024

    Article  Google Scholar 

  17. Standardization IOF (1997) Environmental management: life cycle assessment: principles and framework. ISO

  18. Standardization IOF (2006) Environmental management: life cycle assessment; requirements and guidelines. ISO

  19. Cañote SJB, Barros RM, Lora EES, Del Olmo OA, Dos Santos IFS, Piñas JAV, Ribeiro EM, De Freitas JVR, De Castro ESHL (2021) Energy and economic evaluation of the production of biogas from anaerobic and aerobic sludge in Brazil. Waste Biomass Valoriz 12:947–969. https://doi.org/10.1007/s12649-020-01046-w

    Article  Google Scholar 

  20. PRé Sustainability BV (2014) LCA software for fact-based sustainability. https://simapro.com/. Acessed 31 Oct 2017

  21. Rana R, Ganguly R, Gupta AK (2019) Life-cycle assessment of municipal solid-waste management strategies in Tricity region of India. J Mater Cycles Waste Manag 21:606–623. https://doi.org/10.1007/s10163-018-00822-0

    Article  Google Scholar 

  22. Silva DAL, Nunes AO, Piekarski CM, VadS M, de Souza LSM, Rodrigues TO (2019) Why using different life cycle assessment software tools can generate different results for the same product system? A cause–effect analysis of the problem. Sustain Prod Consum 20:304–315. https://doi.org/10.1016/j.spc.2019.07.005

    Article  Google Scholar 

  23. Todd JA, Curran MA (eds.) (1999) Streamlined life-cycle assessment: a final report from SETAC North America Streamlined LCA Workgroup. Pensacola, Florida: SETAC

  24. Beylot A, Villeneuve J, Bellenfant G (2013) Life Cycle assessment of landfill biogas management: sensitivity to diffuse and combustion air emissions. Waste Manag 33(2):401–411. https://doi.org/10.1016/j.wasman.2012.08.017

    Article  Google Scholar 

  25. Programa De Las Naciones Unidas Para El Desarrollo—PNUD (2011) Ministerio de Energia. Organización de las Naciones Unidas para la Alimentación y la Agricultura. FAO, Global Environment Facility—GEF, Manuel de Biogás. Santiago de Chile: FAO, p 120. ISBN 978-95-306892-0. http://www.fao.org/3/as400s/as400s.pdf. Accessed 31 Oct 2017

  26. Gutierrez GK (2014) Analysis and management of environmental impacts in domestic sewage treatment through life cycle assessment (Análise e gerenciamento de impactos ambientais no tratamento de esgoto doméstico mediante avaliação de ciclo de vida). Thesis (Doctorate in Sanitation, Environment and Water Resources), Federal University of Minas Gerais, Minas Gerais, p 46

  27. Brazil (2013) National inventory of atmospheric emissions from motor vehicles by road 2013, base-year 2012 (Inventário Nacional de Emissões Atmosféricas por Veículos Automotores Rodoviários 2013, ano base 2012). http://www.feam.br/images/stories/inventário/inventário_Ar/2014-0527%20inventrio%202013.pdf. Accessed 26 Oct 2017

  28. Silva APM (2016) Theoretical-experimental evaluation of the sludge disposal of sewage treatment plants in sanitary landfills with power generation (Avaliação Teórica-Experimental da Disposição de Lodos de Estações de Tratamento de Esgoto em Aterros Sanitários com Geração de Energia). Thesis (Doctorate in n Mechanical Engineering)—Federal University of Itajubá, 2016

  29. Rodrigues CRB, Zoldan MA, Leite MLG, Oliveira I (2008) Computer systems to support the product life cycle analysis (LCA) tool (Sistemas computacionais de apoio a ferramenta análise de ciclo de vida do produto, ACV). In: National Meeting On Production Engineering (Encontro Nacional De Engenharia De Produção), 28, Proceedings. Rio de Janeiro

  30. Goedert WJ (2006) Advances and challenges in research, development and innovation in soil fertility and plant mineral nutrition (Avanços e desafios em pesquisa, desenvolvimento e inovação em fertilidade do solo e nutrição mineral de plantas). Braz J Soil Sci (Rev Bras de Ciência do Solo) 31:34–37

    Google Scholar 

  31. Associação Brasileira De Normas Técnicas—ABNT (2009) NBR ISO 14.044: Gestão ambiental: requisitos e orientações. Rio de Janeiro

  32. Rocha MH (2009) Use of life cycle analysis to compare the environmental performance of four alternatives for vinasse treatment (Uso da Análise do Ciclo de Vida para Comparação do Desempenho Ambiental de Quatro Alternativas para Tratamento da Vinhaça). Dissertation (Master of Science in Energy Conversion)—Institute of Mechanical Engineering, Federal University of Itajubá, Brazil, p 234

  33. Obersteiner G, Binner E, Mostbauer P, Salhofer S (2007) Landfill modelling in LCA—a contribution based on empirical data. Waste Manag 27(8):S58–S74. https://doi.org/10.1016/j.wasman.2007.02.018

    Article  Google Scholar 

  34. Barros RM (2012) Tratado sobre resíduos sólidos: gestão, uso e sustentabilidade. Interciencia, Rio de Janeiro

    Google Scholar 

  35. Tchobanoglous G, Burton F, Stensel D (2003) Wastewater engineering: treatment and reuse, 4th edn. Metcalf & Eddy Inc. Mcgraw-Hill, New York, p 1819

    Google Scholar 

  36. Von Sperling M (2005) Princípios do Tratamento Biológico de Águas Residuárias: Introdução à qualidade das águas e ao tratamento de esgotos. Belo Horizonte, MG: Departamento de Engenharia Sanitária e Ambiental, Editora UFMG, 3a ed

  37. Jordão EP, Pessôa CA (2005) Tratamento de Esgotos Domésticos. Rio de Janeiro 4a ed

  38. Chernicharo CAL (1997) Princípios do Tratamento Biológico de Águas Residuárias. Reatores Anaeróbios. Belo Horizonte MG 5:246

    Google Scholar 

  39. Dixon A, Simon M, Burkitt T (2003) Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol Eng 20(4):297–308. https://doi.org/10.1016/S0925-8574(03)00007-7

    Article  Google Scholar 

  40. Remy C (2010) Life cycle assessment of conventional and source-separation systems for urban wastewater management. Dissertation (Doktor der Ingenieurwissenschaften), Fakultät III –Prozesswissenschaften – der Technischen Universität Berlin. Technischen Universität Berlin, Berlin

Download references

Acknowledgements

The authors would like to thank the Brazilian National Council of Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq; the acronym in English), for the productivity in research Grant given to Prof. Regina Mambeli Barros (PQ2, Process Number: 303805/2018-8), and to Prof. Electo Eduardo Silva Lora. We would also like to thank the Brazilian Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Capes; the acronym in English) for granting the Master of Science scholarship (Finance Code 1) to Susan J. B. Cañotes, Hellen Luisa de Castro e Silva, and the doctorate scholarship to Ivan Felipe da Silva dos Santos. We would like to thank the Minas Gerais State Agency for Research and Development (Fundação de Amparo à Pesquisa do Estado de Minas Gerais, FAPEMIG, in Portuguese) for granting financial support (Project PROCESS N.: TEC—APQ-03080-18 “Study of the potential of Greenhouse Gases mitigation prognostic in the state of Minas Gerais by the electric energy generation by biogas from anaerobic digestion of organic fraction of urban solid waste and wastewater treatment plant sludge”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Mambeli Barros.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañote, S.J.B., Barros, R.M., Lora, E.E.S. et al. Life cycle assessment of upflow anaerobic sludge blanket sludge management and activated sludge systems aiming energy use in the municipality of Itajubá, Minas Gerais, Brazil. J Mater Cycles Waste Manag 23, 1810–1830 (2021). https://doi.org/10.1007/s10163-021-01253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01253-0

Keywords

Navigation