Skip to main content
Log in

Ammonium removal from landfill fresh leachate using zeolite as adsorbent

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In this study, the effect of natural zeolite on the ammonium ion removal from landfill fresh leachate (LFL) was investigated. The effect of different parameters such as pH, contact time (CT) and zeolite concentration (ZC) in a batch system were studied to optimize ammonium ion removal from LFL by natural zeolite. Firstly, the effect of variable pH values (5–9) was investigated. In the next step, at the optimal pH condition (7), the effect of ZCs of 10–200 g/L was studied. It is indicated that, from 10 up to 80 g/L, the amount of ammonium ion removed is increased. Meanwhile, increasing of the ZC from 80 until 200 g/L resulted in decreasing removal efficiency. Finally, in the previous optimal conditions, the role of CTs (5–300 min) is inspected. With increasing CT from 5 up to 30 min the amount of removal rate was increased. Following with increasing CT, the intensity of the uptrend decreased and the removal rate reached a steady state. Results of the experiments indicate optimal conditions for ammonium ion removal from LFL (44.49%) occur at pH, 7, ZC of 80 g/L and CT of 30 min. In addition, the adsorption isotherm and kinetics confirmed that the Langmuir isotherm (R2 = 0.9451) was more consistent than the Freundlich isotherm (R2 = 0.9211). This study indicates that clinoptilolite zeolite (CZ) as an inexpensive and suitable adsorbent, has a good potential for removing ammonium ions from LFL solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. United N (2017) World population prospects: The 2017 revision, key findings and advance tables; Department of economics and social affairs PD, editor. New York: United Nations. Working Paper No. ESA/P/WP/248; United Nations: New York, NY, USA.

  2. Youcai Z (2018) Pollution control technology for leachate from municipal solid waste: landfills, incineration plants, and transfer stations. Butterworth-Heinemann

    Google Scholar 

  3. Nanda S, Berruti F (2020) Municipal solid waste management and landfilling technologies: a review. Chem Lett. https://doi.org/10.1007/s10311-020-01100-y

    Article  Google Scholar 

  4. Trebouet D, Schlumpf JP, Jaouen P, Quemeneur F (2001) Stabilized landfill leachate treatment by combined physicochemical–nanofiltration processes. Water Res 35(12):2935–2942. https://doi.org/10.1016/S0043-1354(01)00005-7

    Article  Google Scholar 

  5. Kargi F, Pamukoglu MY (2003) Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochem 38(10):1413–1420. https://doi.org/10.1016/S0032-9592(03)00030-X

    Article  Google Scholar 

  6. Kelly G (1996) Environmental engineering. Mc-Graw Hill Publishing Company, Maidenhead, England

    Google Scholar 

  7. Luo H, Zeng Y, Cheng Y, He D, Pan X (2020) Recent advances in municipal landfill leachate: a review focusing on its characteristics, treatment, and toxicity assessment. Sci Total Environ 703:135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  Google Scholar 

  8. Bakhshoodeh R, Alavi N, Oldham C, Santos RM, Babaei AA, Vymazal J, Paydary P (2020) Constructed wetlands for landfill leachate treatment: a review. Ecol Eng 146:105725. https://doi.org/10.1016/j.ecoleng.2020.105725

    Article  Google Scholar 

  9. Alavi N, Eslami A, Saghi MH (2018) Measurement and monitoring of anions, cations and metals in landfill leachate in Iranian metropolises. Data Brief 21:1818–1822. https://doi.org/10.1016/j.dib.2018.11.013

    Article  Google Scholar 

  10. Sengupta S, Nawaz T, Beaudry J (2015) Nitrogen and Phosphorus Recovery from Wastewater. Curr Pollut Rep 1(3):155–166. https://doi.org/10.1007/s40726-015-0013-1

    Article  Google Scholar 

  11. Balci S, Dincel Y (2002) Ammonium ion adsorption with sepiolite: use of transient uptake method. Chem Eng Process 41:79–85. https://doi.org/10.1016/S0255-2701(01)00104-0

    Article  Google Scholar 

  12. Rozic M, Stefanovic SC, Kurajica S, Vancina V, Hodzic E (2000) Ammoniacal nitrogen removal from water by treatment with clays and zeolites. Water Res 34(14):3675–3681. https://doi.org/10.1016/S0043-1354(00)00113-5

    Article  Google Scholar 

  13. Chen J, Lu X (2018) Synthesis and characterization of zeolites NaA and NaX from coal gangue. J Mater Cycles Waste Manag 20(1):489–495. https://doi.org/10.1007/s10163-017-0605-5

    Article  Google Scholar 

  14. Townsend RP, Coker EN (2001) Ion exchange in zeolites. Stud Surf Sci Catal 137:467–524. https://doi.org/10.1016/S0167-2991(01)80253-6

    Article  Google Scholar 

  15. Gerrard LA, Henry PF, Weller MT, Ahmed A (2004) Structure and ion exchange properties of the natural zeolites edingtonite and goosecreekite. Stud Surf Sci Catal 154:1341–1348. https://doi.org/10.1016/S0167-2991(04)80647-5

    Article  Google Scholar 

  16. Burgess RM, Perron MM, Cantwell MG, Ho KT, Serbst JR, Pelletier MC (2004) Use of zeolite for removing ammonia and ammonia-caused toxicity in marine toxicity identification evaluations. Arch Environ Contam Toxicol 47(4):440–447. https://doi.org/10.1007/s00244-004-4003-3

    Article  Google Scholar 

  17. Karakurt C, Haldun Kurama H, Topçu IB (2010) Utilization of natural zeolite in aerated concrete production. Cem Concr Compos 32(1):1–8. https://doi.org/10.1016/j.cemconcomp.2009.10.002

    Article  Google Scholar 

  18. Englert AH, Rubio J (2005) Characterization and environmental application of a Chilean natural zeolite. Int J Miner Process 75(1–2):21–29. https://doi.org/10.1016/j.minpro.2004.01.003

    Article  Google Scholar 

  19. Yeritsyan HN, Nickoghosyan SK, Sahakyan AA, Harutunyan VV, Hakhverdyan EA, Grigoryan NE (2008) Comparative analyses of physical properties of natural zeolites from Armenia and USA. Stud Surf Sci Catal 174:529–532. https://doi.org/10.1016/S0167-2991(08)80256-X

    Article  Google Scholar 

  20. Wang Y, Liu S, Xu Z, Han T, Chuan S, Zhu T (2006) Ammonia removal from leachate solution using natural Chinese clinoptilolite. J Hazard Mater 136(3):735–740. https://doi.org/10.1016/j.jhazmat.2006.01.002

    Article  Google Scholar 

  21. Karadag D, Tok S, Akgul E, Turan M, Ozturk M, Demir A (2008) Ammonium removal from sanitary landfill leachate using natural Gördes clinoptilolite. J Hazard Mater 153(1–2):60–66. https://doi.org/10.1016/j.jhazmat.2007.08.019

    Article  Google Scholar 

  22. Xue R, Donovan A, Zhang H, Ma Y, Adams C, Yang J, Hua B, Inniss E, Eichholz T, Shi H (2018) Simultaneous removal of ammonia and N-nitrosamine precursors from high ammonia water by zeolite and powdered activated carbon. J Environ Sci (China) 64:82–91. https://doi.org/10.1016/j.jes.2017.02.010

    Article  Google Scholar 

  23. Vassileva P, Voikova D (2009) Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. J Hazard Mater 170(2–3):948–953. https://doi.org/10.1016/j.jhazmat.2009.05.062

    Article  Google Scholar 

  24. Wasielewski S, Rott E, Minke R, Steinmetz H (2018) Evaluation of different clinoptilolite zeolites as adsorbent for ammonium removal from highly concentrated synthetic wastewater. Water 10(5):584. https://doi.org/10.3390/w10050584

    Article  Google Scholar 

  25. Sarioglu ME (2005) Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Sep Purif Technol 41(1):1–1. https://doi.org/10.1016/j.seppur.2004.03.008

    Article  MathSciNet  Google Scholar 

  26. Couto RS, Oliveira AF, Guarino AW, Perez DV, Marques MR (2017) Removal of ammonia nitrogen from distilled old landfill leachate by adsorption on raw and modified aluminosilicate. Environ Technol 38(7):816–826. https://doi.org/10.1080/09593330.2016.1212935

    Article  Google Scholar 

  27. Halim AA, Aziz HA, Johari MA, Ariffin KS (2010) Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination 262(1–3):31–35. https://doi.org/10.1016/j.desal.2010.05.036

    Article  Google Scholar 

  28. Halim AA, Aziz HA, Johari MA (2009) Ariffin KS (2009) Removal of ammoniacal nitrogen and COD from semi-aerobic landfill leachate using low-cost activated carbon-zeolite composite adsorbent. Int J Environ Manage 4(3–4):399. https://doi.org/10.1504/IJEWM.2009.027404

    Article  Google Scholar 

  29. Luo H, Cheng Y, He D, Yang EH (2019) Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci Total Environ 668:90–103. https://doi.org/10.1016/j.scitotenv.2019.03.004

    Article  Google Scholar 

  30. Miao L, Yang G, Tao T, Peng Y (2019) Recent advances in nitrogen removal from landfill leachate using biological treatments—a review. J Environ Manage 235:178–185. https://doi.org/10.1016/j.jenvman.2019.01.057

    Article  Google Scholar 

  31. Yousuf TB, Rahman MM (2009) Transforming an open dump into a sanitary landfill: a development effort in waste management. J Mater Cycles Waste Manag 11(3):277–283. https://doi.org/10.1007/s10163-009-0242-8

    Article  Google Scholar 

  32. APHA A (2005) Standard methods for the examination of water and wastewater part 1000 standard methods for the examination of water and wastewater

  33. Tibljaš D, Šćavničar S (1988) Mineraloško istraživanje klinoptilolita, plagioklasa i seladonita iz tufa Donjeg Jesenja u Hrvatskom Zagorju. Geol Vjesn 41:99–117

    Google Scholar 

  34. Alberti AL, Armbruster T, Artioli GI, Colella CA, Galli ER, Grice JD, Liebau FR, Minato HI, Nickel EH, Passaglia EL, PEACOR DR, (1997) Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:1571–1606

    Google Scholar 

  35. Koyama K, Takeuchi Y (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr Cryst Mater 145(3–4):216–239. https://doi.org/10.1524/zkri.1977.145.3-4.216

    Article  Google Scholar 

  36. Jorgensen TC, Weatherley LR (2003) Ammonia removal from wastewater by ion exchange in the presence of organic contaminants. Water Res 37:1723–1728. https://doi.org/10.1016/S0043-1354(02)00571-7

    Article  Google Scholar 

  37. Bhatnagar A, Kumar E, Sillanpää M (2010) Nitrate removal from water by nano-alumina: characterization and sorption studies. Chem Eng J 163(3):317–323. https://doi.org/10.1016/j.cej.2010.08.008

    Article  Google Scholar 

  38. Saltali K, Sari A, Aydin M (2007) Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. J Hazard Mater 141(1):258–263. https://doi.org/10.1016/j.jhazmat.2006.06.124

    Article  Google Scholar 

  39. Russel JB (1992) General Chemistry, 2nd edn. McGraw-Hill, New York, USA

    Google Scholar 

  40. Demir A, Günay A, Debik E (2002) Ammonium removal from aqueous solution by ion-exchange using packed bed natural zeolite. Water SA 28(3):329–336. https://doi.org/10.4314/wsa.v28i3.4903

    Article  Google Scholar 

  41. Dianati Tilaki RA, Kahe D, Zazouli MA (2013) Efficiency of zeolite clinoptilolite in removal of ammonium ion from polluted waters. J Mazand Univ Med Sci 22(97):250–256

    Google Scholar 

  42. Kithome M, Paul JW, Lavkulich LM, Bomke AA (1998) Kinetic of ammonium adsorption and desorption by natural zeolite clinoptilolite. Soil Sci Soc Am J 62(3):622–629. https://doi.org/10.2136/sssaj1998.03615995006200030011x

    Article  Google Scholar 

  43. Hankins NP, Pliankarom S, Hilal N (2004) An equilibrium ion-exchange study on the removal of NH4 ion from aqueous effluent using clinoptilolite. Sep Sci Technol 39(15):3639. https://doi.org/10.1081/SS-200038180

    Article  Google Scholar 

  44. He Y, Lin H, Dong Y, Liu Q, Wang L (2016) Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite. Chemosphere 164:387–395. https://doi.org/10.1016/j.chemosphere.2016.08.110

    Article  Google Scholar 

  45. Fu H, Li Y, Yu Z, Shen J, Li J, Zhang M, Ding T, Xu L, Lee SS (2020) Ammonium removal using a calcined natural zeolite modified with sodium nitrate. J Hazard Mater 393:122481. https://doi.org/10.1016/j.jhazmat.2020.122481

    Article  Google Scholar 

  46. Martins TH, Souza TS, Foresti E (2017) Ammonium removal from landfill leachate by Clinoptilolite adsorption followed by bioregeneration. J Environ 5(1):63–68. https://doi.org/10.1016/j.jece.2016.11.024

    Article  Google Scholar 

  47. Zhang M, Zhang H, Xu D, Han L, Niu D, Tian B, Zhang J, Zhang L, Wu W (2011) Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method. Desalination 271(1–3):111–121. https://doi.org/10.1016/j.desal.2010.12.021

    Article  Google Scholar 

  48. Pepper RA, Couperthwaite SJ, Millar GJ (2018) Re-use of waste red mud: production of a functional iron oxide adsorbent for removal of phosphorous. J Water Process Eng 25:138–148. https://doi.org/10.1016/j.jwpe.2018.07.006

    Article  Google Scholar 

  49. Abukhadra MR, Basyouny MG, El-Sherbeeny AM, El-Meligy MA (2020) The effect of different green alkali modification processes on the clinoptilolite surface as adsorbent for ammonium ions; characterization and application. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110145

    Article  Google Scholar 

  50. Karadag D, Koc Y, Turan M, Ozturk M (2007) A comparative study of linear and non-linear regression analysis for ammonium exchange by clinoptilolite zeolite. J Hazard Mater 144(1–2):432–437. https://doi.org/10.1016/j.jhazmat.2006.10.055

    Article  Google Scholar 

  51. Al-Ghouti MA, Da’ana DA (2020) Guidelines for the use and interpretation of adsorption isotherm models: a review. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  Google Scholar 

  52. Geethamani CK, Ramesh ST, Gandhimathi R, Nidheesh PV (2013) Fluoride sorption by treated fly ash: kinetic and isotherm studies. J Mater Cycles Waste Manag 15(3):381–392. https://doi.org/10.1007/s10163-013-0128-7

    Article  Google Scholar 

  53. Foo KY, Hameed BH (2020) Insights into the modeling of adsorption isotherm systems. Int J Chem Eng 156(1):2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  54. Wei YX, Ye ZF, Wang YL, Ma MG, Li YF (2011) Enhanced ammonia nitrogen removal using consistent ammonium exchange of modified zeolite and biological regeneration in a sequencing batch reactor process. Environ Technol 32(12):1337–1343. https://doi.org/10.1080/09593330.2010.536784

    Article  Google Scholar 

  55. Weber TW, Chakravorti RK (1974) Pore and solid diffusion models for fixed-bed adsorbers. AIChE J 20(2):228–238. https://doi.org/10.1002/aic.690200204

    Article  Google Scholar 

  56. Ames LL Jr (1960) The cation sieve properties of clinoptilolite. Am Mineral 45(5–6):689–700

    Google Scholar 

Download references

Acknowledgements

This work was part of a funded MSc thesis of Shole Mosanefi, a student at School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The financial support of the Shahid Beheshti University of Medical Sciences is appreciated (IR.SBMU.PHNS.REC.1398.082, grant no: 20929). The authors also express their appreciation to the Sanandaj Solid Waste Management Organization (SSWMO) for providing sampling from landfill leachate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadali Alavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosanefi, S., Alavi, N., Eslami, A. et al. Ammonium removal from landfill fresh leachate using zeolite as adsorbent. J Mater Cycles Waste Manag 23, 1383–1393 (2021). https://doi.org/10.1007/s10163-021-01216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01216-5

Keywords

Navigation