Skip to main content
Log in

Methane recovery from acidic tofu wastewater using an anaerobic fixed-bed reactor with bamboo as the biofilm carrier

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Wastewater generated during acid coagulation in tofu processing has high organic concentrations and low pH. Several small industries in Indonesia discharge such wastewater without treatment, necessitating economical treatment to control water pollution. In this study, the feasibility of methane production from the treatment of acidic tofu processing wastewater was investigated. For this, anaerobic treatment of tofu processing wastewater using a fixed-bed reactor employing cut bamboo as the carrier was examined and compared to an upflow anaerobic sludge blanket reactor. Without neutralization, the fixed-bed reactor outperformed the upflow anaerobic sludge blanket reactor at a chemical oxygen demand load of 4.3 kg chemical oxygen demand/m3 day. The highest total organic carbon removal efficiency and methane gas yield were 95% and 0.98 L/g total organic carbon removed, respectively. The two most abundant bacteria were the genus Paludibacter and the unclassified Bacteriodetes; both from the family Porphyromonadaceae. Hydrogenotrophic methanogens from the genera Methanoculleus and Methanobacterium were the dominant archaea, indicating that hydrogenotrophic methanogenesis was a major methane formation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belén F, Sánchez J, Hernández E, Auleda JM, Raventós M (2012) One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. J Food Eng 110:364–373. https://doi.org/10.1016/j.jfoodeng.2011.12.036

    Article  Google Scholar 

  2. REEEP (2014) Tofu production: a massive opportunity for RE biogas in Indonesia. https://www.reeep.org/news/tofu-production-massive-opportunity-re-biogas-indonesi. Accessed 17 June 2019.

  3. Widyarani BB, ES, Dara F, Hamidah U, Sriwuryandari L, Hariyadi HR, Sintawardani N, (2019) Distribution of protein fractions in tofu whey wastewater and its potential influence on anaerobic digestion. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/277/1/012012

    Article  Google Scholar 

  4. Shurtleff W, Aoyagi, (2000) A tofu & soymilk production: a craft and technical manual. Soyfoods Center, Lafayette

    Google Scholar 

  5. Anggarini S, Hidayat N, Sunyoto NMS, Wulandari PS (2015) Optimization of hydraulic retention time (HRT) and inoculums addition in wastewater treatment using anaerobic digestion system. Agric Agric Sci Procedia 3:95–101. https://doi.org/10.1016/j.aaspro.2015.01.020

    Article  Google Scholar 

  6. Faisal M, Mulana F, Gani A, Daimon H (2015) Physical and chemical properties of wastewater discharged from tofu industries in Banda Aceh city. Indonesia Res J Pharm Biol Chem Sci 6:1053–1058

    Google Scholar 

  7. Lettinga G (1995) Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek 67:3–28. https://doi.org/10.1007/BF00872193

    Article  Google Scholar 

  8. Picanço AP, Vallero MVG, Gianotti EP, Zaiat M, Blundi CE (2001) Influence of porosity and composition of supports on the methanogenic biofilm characteristics developed in a fixed bed anaerobic reactor. Water Sci Technol 44:197–204. https://doi.org/10.2166/wst.2001.0220

    Article  Google Scholar 

  9. Hulshoff Pol LW, de Zeeuw WJ, Velzeboer CTM, Lettinga G (1983) Granulation in UASB reactors. Water Sci and Technol 15:291–304. https://doi.org/10.2166/wst.1983.0172

    Article  Google Scholar 

  10. Liu Y, Xu HL, Yang SF, Tay JH (2003) Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Res 37:661–673. https://doi.org/10.1016/S0043-1354(02)00351-2

    Article  Google Scholar 

  11. Evren M, Ozgun H, Kaan R, Ozturk I (2011) Anaerobic treatment of industrial effluents: an overview of applications. García-Einschlag FS, Ed. Waste water—treat. Croatia: Reutil, pp 2–28.

  12. Liu C, Yuan X, Zeng G, Li W, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol 99:882–888. https://doi.org/10.1016/j.biortech.2007.01.013

    Article  Google Scholar 

  13. Ghaly AE (1996) A comparative study of anaerobic digestion of acid cheese whey and dairy manure in a two-stage reactor. Bioresour Technol 58:61–72. https://doi.org/10.1016/S0960-8524(96)00105-8

    Article  Google Scholar 

  14. De Haast J, Britz TJ, Novello JC (1986) Effect of different neutralizing treatments on the efficiency of an anaerobic digester fed with deproteinated cheese whey. J Dairy Res 53:467–476. https://doi.org/10.1017/S0022029900025085

    Article  Google Scholar 

  15. Fox EJ, Clanton CJ, Goodrich PR, Backus BD, Morris HA (1992) Liming an anaerobic cheese whey digester. Trans Am Soc Agric Eng. 35:269–274. https://doi.org/10.13031/2013.28599

    Article  Google Scholar 

  16. Yu HQ, Hu ZH, Hong TQ, Gu GW (2002) Performance of an anaerobic filter treating soybean processing wastewater with and without effluent recycle. Process Biochem 38:507–513. https://doi.org/10.1016/S0032-9592(02)00175-9

    Article  Google Scholar 

  17. Tritt WP, Kang H (2018) Slaughterhouse wastewater treatment in a bamboo ring anaerobic fixed-bed reactor. Environ Eng Res 23:70–75. https://doi.org/10.4491/eer.2017.040

    Article  Google Scholar 

  18. Torres DGB, Lucas SDM, Andreani CL, de Carvalho KQ, Coelho SRM, Gomes SD (2017) Hydrogen production and performance of anaerobic fixed-bed reactors using three support arrangements from cassava starch wastewater. Eng Agrícola 37:160–172. https://doi.org/10.1590/1809-4430-eng.agric.v37n1p160-172/2017

    Article  Google Scholar 

  19. APHA, Awwa, WEF, (2012) Standard methods for examination of water and wastewater, 22nd edn. American Public Health Association, Washington DC, USA

    Google Scholar 

  20. Caporaso JG, Lauber CL, Walters WA, Berg-lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. https://doi.org/10.1038/ismej.2012.8

    Article  Google Scholar 

  21. Herlemann DPR, Labrenz M, Ju K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  Google Scholar 

  22. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6

    Article  Google Scholar 

  23. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  Google Scholar 

  24. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  Google Scholar 

  25. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  Google Scholar 

  26. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  Google Scholar 

  27. McCarty PL (1964) Anaerobic waste treatment fundamentals. Public works, pp 91–92.

  28. Ten Brummeler E, Hulshoff Pol LW, Dolfing J, Lettinga G, Zehnder AJB (1985) Methanogenesis in an upflow anaerobic sludge blanket reactor at pH 6 on an acetate-propionate mixture. Appl Environ Microbiol 49:1472–1477. https://doi.org/10.1128/AEM.49.6.1472-1477.1985

    Article  Google Scholar 

  29. Karadag D, Köroʇlu OE, Ozkaya B, Cakmakci M (2015) A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem 50:262–271. https://doi.org/10.1016/j.procbio.2014.11.005

    Article  Google Scholar 

  30. Gannoun H, Khelifi E, Bouallagui H, Touhami Y, Hamdi M (2008) Ecological clarification of cheese whey prior to anaerobic digestion in upflow anaerobic filter. Bioresour Technol 9:6105–6111. https://doi.org/10.1016/j.biortech.2007.12.037

    Article  Google Scholar 

  31. Alves M, Pereira A, Mota M, Novais JM, Colleran E (1998) Staged and non-staged anaerobic filters: microbial activity segregation, hydrodynamic behavior and performance. J Chem Technol Biotechnol 73:99–108. https://doi.org/10.1002/(SICI)1097-4660(1998100)73:2%3c99::AID-JCTB934%3e3.0.CO;2-O

    Article  Google Scholar 

  32. Cardinali-Rezende J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour Technol 119:373–383. https://doi.org/10.1016/j.biortech.2012.05.136

    Article  Google Scholar 

  33. Abram F, Enright AM, O’Reilly J, Botting CH, Collins G, O’Flaherty V (2011) A metaproteomic approach gives functional insights into anaerobic digestion. J Appl Microbiol 110:1550–1560. https://doi.org/10.1111/j.1365-2672.2011.05011.x

    Article  Google Scholar 

  34. Lim JX, Zhou Y, Vadivelu VM (2020) Enhanced volatile fatty acid production and microbial population analysis in anaerobic treatment of high strength wastewater. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.101058

    Article  Google Scholar 

  35. Cibis KG, Gneipel A, König H (2016) Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants. J Biotechnol 220:51–63. https://doi.org/10.1016/J.JBIOTEC.2016.01.008

    Article  Google Scholar 

  36. Jiang Y, Dennehy C, Lawlor PG, Hu Z, McCabe M, Cormican P, Zhan X, Gardiner GE (2019) Exploring the roles of and interactions among microbes in dry co-digestion of food waste and pig manure using high-throughput 16S rRNA gene amplicon sequencing. Biotechnol Biofuels 12:1–16. https://doi.org/10.1186/s13068-018-1344-0

    Article  Google Scholar 

  37. Li Y, Shi J, Nelson MC, Chen P, Graf J, Li Y, Yu Z (2016) Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresour Technol 200:744–752. https://doi.org/10.1016/j.biortech.2015.10.078

    Article  Google Scholar 

  38. Lü F, Bize A, Guillot A, Monnet V, Madigou C, Chapleur O, Mazéas L, He P, Bouchez T (2014) Metaproteomics of cellulose methanisation under thermophilic conditions reveals a surprisingly high proteolytic activity. ISME J 8:88–102. https://doi.org/10.1038/ismej.2013.120

    Article  Google Scholar 

  39. Lee KCY, Morgan XC, Dunfield PF, Tamas I, McDonald IR, Stott MB (2014) Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes. ISME J 8:1522–1533. https://doi.org/10.1038/ismej.2013.251

    Article  Google Scholar 

  40. Zhang H, Banaszak JE, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann BE (2009) Focused-pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Res 43:4517–4526. https://doi.org/10.1016/j.watres.2009.07.034

    Article  Google Scholar 

  41. Stams AJM, Sousa DZ, Kleerebezem R, Plugge CM (2012) Role of syntrophic microbial communities in high-rate methanogenic bioreactors. Water Sci Technol 66:352–362. https://doi.org/10.2166/wst.2012.192

    Article  Google Scholar 

  42. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296. https://doi.org/10.1128/mmbr.43.2.260-296.1979

    Article  Google Scholar 

  43. De Vrieze J, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. https://doi.org/10.1016/j.biortech.2012.02.079

    Article  Google Scholar 

  44. Borrel G, O’Toole PW, Harris HMB, Peyret P, Brugère JF, Gribaldo S (2013) Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol Evol 5:1769–1780. https://doi.org/10.1093/gbe/evt128

    Article  Google Scholar 

  45. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62:1902–1907. https://doi.org/10.1099/ijs.0.033712-0

    Article  Google Scholar 

  46. Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T (2013) Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat Commun. https://doi.org/10.1038/ncomms2432

    Article  Google Scholar 

  47. Hao LP, Lü F, Li L, Shao LM, He PJ (2012) Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresour Technol 126:418–424. https://doi.org/10.1016/J.BIORTECH.2011.12.072

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research and Innovation in Science and Technology Project (RISET-Pro) of the Ministry of Research, Technology and Higher Education of Republic of Indonesia (World Bank Loan No. 8245-ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryoko Yamamoto-Ikemoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 70 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilawati, D., Matsuura, N., Honda, R. et al. Methane recovery from acidic tofu wastewater using an anaerobic fixed-bed reactor with bamboo as the biofilm carrier. J Mater Cycles Waste Manag 23, 537–547 (2021). https://doi.org/10.1007/s10163-020-01145-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01145-9

Keywords

Navigation