Skip to main content
Log in

Structural and Ultrastructural Changes to Type I Spiral Ganglion Neurons and Schwann Cells in the Deafened Guinea Pig Cochlea

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Sensorineural hearing loss is commonly caused by damage to cochlear sensory hair cells. Coinciding with hair cell degeneration, the peripheral fibres of type I spiral ganglion neurons (SGNs) that normally form synaptic connections with the inner hair cell gradually degenerate. We examined the time course of these degenerative changes in type I SGNs and their satellite Schwann cells at the ultrastructural level in guinea pigs at 2, 6, and 12 weeks following aminoglycoside-induced hearing loss. Degeneration of the peripheral fibres occurred prior to the degeneration of the type I SGN soma and was characterised by shrinkage of the fibre followed by retraction of the axoplasm, often leaving a normal myelin lumen devoid of axoplasmic content. A statistically significant reduction in the cross-sectional area of peripheral fibres was evident as early as 2 weeks following deafening (p < 0.001, ANOVA). This was followed by a decrease in type I SGN density within Rosenthal’s canal that was statistically significant 6 weeks following deafening (p < 0.001, ANOVA). At any time point examined, few type I SGN soma were observed undergoing degeneration, implying that once initiated, soma degeneration was rapid. While there was a significant reduction in soma area as well as changes to the morphology of the soma, the ultrastructure of surviving type I SGN soma appeared relatively normal over the 12-week period following deafening. Satellite Schwann cells exhibited greater survival traits than their type I SGN; however, on loss of neural contact, they reverted to a non-myelinating phenotype, exhibiting an astrocyte-like morphology with the formation of processes that appeared to be searching for new neural targets. In 6- and 12-week deafened cochlea, we observed cellular interaction between Schwann cell processes and residual SGNs that distorted the morphology of the SGN soma. Understanding the response of SGNs, Schwann cells, and the complex relationship between them following aminoglycoside deafening is important if we are to develop effective therapeutic techniques designed to rescue SGNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Adamo NJ, Daigneault EA (1973) Ultrastructural features of neurons and nerve fibres in the spiral ganglia of cats. J Neurocytol 2:91–103

    Article  CAS  PubMed  Google Scholar 

  • Ahmad I, Fernando A, Gurgel R, Clark JJ, Xu L, Hansen MR (2015) Merlin status regulates p75(NTR) expression and apoptotic signaling in Schwann cells following nerve injury. Neurobiol Dis 82:114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anniko M, Arnold W, Stigbrand T, Strom A (1995) The human spiral ganglion. Orl J Oto Rhino Laryngol Relat Spec 57:68–77

    Article  CAS  Google Scholar 

  • Arthur-Farraj PJ, Latouche M, Wilton DK, Quintes S, Chabrol E, Banerjee A, Woodhoo A, Jenkins B, Rahman M, Turmaine M, Wicher GK, Mitter R, Greensmith L, Behrens A, Raivich G, Mirsky R, Jessen KR (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson PJ, Wise AK, Flynn BO, Nayagam BA, Hume CR, O'Leary SJ, Shepherd RK, Richardson RT (2012) Neurotrophin gene therapy for sustained neural preservation after deafness. PLoS One 7:e52338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohne BA, Harding GW (1992) Neural regeneration in the noise-damaged chinchilla cochlea. Laryngoscope 102:693–703

    Article  CAS  PubMed  Google Scholar 

  • Bohne BA, Harding GW, Nordmann AS, Tseng CJ, Liang GE, Bahadori RS (1999) Survival-fixation of the cochlea: a technique for following time-dependent degeneration and repair in noise-exposed chinchillas. Hear Res 134:163–178

    Article  CAS  PubMed  Google Scholar 

  • Brown MC (1987a) Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260:605–618

    Article  CAS  PubMed  Google Scholar 

  • Brown MC (1987b) Morphology of labeled afferent fibers in the guinea pig cochlea. J Comp Neurol 260:591–604

    Article  CAS  PubMed  Google Scholar 

  • Dodson HC (1997) Loss and survival of spiral ganglion neurons in the guinea pig after intracochlear perfusion with aminoglycosides. J Neurocytol 26:541–556

    Article  CAS  PubMed  Google Scholar 

  • Fallon J, Ryugo DK, Shepherd R (2014) Consequences of deafness and electrical stimulation on the peripheral and central auditory system. In: Cochlear implants 3 handbook of clinical neurophysiology—disorders of peripheral and central Auditory processing: Thieme Publisher

  • Forge A (1985) Outer hair cell loss and supporting cell expansion following chronic gentamicin treatment. Hear Res 19:171–182

    Article  CAS  PubMed  Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5:3–22

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Santamaria V, Alvarado JC, Melgar-Rojas P, Gabaldon-Ull MC, Miller JM, Juiz JM (2017) The role of glia in the peripheral and central auditory system following noise overexposure: contribution of TNF-alpha and IL-1beta to the pathogenesis of hearing loss. Front Neuroanat 11:9

    Article  PubMed  PubMed Central  Google Scholar 

  • George SS, Wise AK, Fallon JB, Shepherd RK (2015) Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats. J Neural Eng 12:036003

    Article  PubMed  Google Scholar 

  • Gillespie LN, Zanin MP, Shepherd RK (2014) Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig. J Control Release:26–34

  • Gillespie LN, Clark GM, Bartlett PF, Marzella PL (2003) BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to an accelerated loss of survival effects. J Neurosci Res 71:785–790

    Article  CAS  PubMed  Google Scholar 

  • Glenn TD, Talbot WS (2013) Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Curr Opin Neurobiol 23:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Glueckert R, Bitsche M, Miller JM, Zhu Y, Prieskorn DM, Altschuler RA, Schrott-Fischer A (2008) Deafferentation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor. J Comp Neurol 507:1602–1621

    Article  PubMed  Google Scholar 

  • Gomez-Sanchez JA et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210:153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128:147–165

    Article  CAS  PubMed  Google Scholar 

  • Heinrich UR, Schmidtmann I, Strieth S, Helling K (2015) Cell-specific accumulation patterns of gentamicin in the guinea pig cochlea. Hear Res 326:40–48

    Article  CAS  PubMed  Google Scholar 

  • Hurley PA, Crook JM, Shepherd RK (2007) Schwann cells revert to non-myelinating phenotypes in the deafened rat cochlea. Eur J Neurosci 26:1813–1821

    Article  PubMed  Google Scholar 

  • Imamura S, Adams JC (2003a) Distribution of gentamicin in the guinea pig inner ear after local or systemic application. J Assoc Res Otolaryngol 4:176–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura SI, Adams JC (2003b) Changes in cytochemistry of sensory and nonsensory cells in gentamicintreated cochleas. J Assoc Res Otolaryngol, 4:196-218

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ (2013) Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery. PLoS One 8:e56484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur T, Zamani D, Tong L, Rubel EW, Ohlemiller KK, Hirose K, Warchol ME (2015) Fractalkine signaling regulates macrophage recruitment into the cochlea and promotes the survival of spiral ganglion neurons after selective hair cell lesion. J Neurosci 35(45) :15050–15061

  • Kimura RS, Ota CY, Takahashi T (1979) Nerve fiber synapses on spiral ganglion cells in the human cochlea. Ann Otol Rhinol Laryngol Suppl 88:1–17

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Bandtlow C, Gestwa L, Kopschall I, Rohbock K, Wiechers B, Zenner HP, Zimmermann U (1998) Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development 125:3709–3718

    CAS  PubMed  Google Scholar 

  • Kohonen A (1965) Effect of some ototoxic drugs upon the pattern and innervation of cochlear sensory cells in the guinea pig. Acta Otolaryngol Suppl:1–70

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kujawa SG, Liberman MC (2015) Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res 330:191–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Ladrech S, Guitton M, Saido T, Lenoir M (2004) Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 477:149–160

    Article  CAS  PubMed  Google Scholar 

  • Ladrech S, Wang J, Simonneau L, Puel JL, Lenoir M (2007) Macrophage contribution to the response of the rat organ of Corti to amikacin. J Neurosci Res 85:1970–1979

    Article  CAS  PubMed  Google Scholar 

  • Landry TG, Fallon JB, Wise AK, Shepherd RK (2013) Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants. J Comp Neurol 521:2818–2832

    Article  PubMed  PubMed Central  Google Scholar 

  • Leake-Jones PA, Vivion MC (1979) Cochlear pathology in cats following administration of neomycin sulfate. Scan Electron Microsc 3:983–991

    Google Scholar 

  • Leake PA, Hradek GT (1988) Cochlear pathology of long term neomycin induced deafness in cats. Hear Res 33:11–33

    Article  CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT, Snyder RL (1999) Chronic electrical stimulation by a cochlear implant promotes survival of spiral ganglion neurons after neonatal deafness. J Comp Neurol 412:543–562

    Article  CAS  PubMed  Google Scholar 

  • Leake PA, Hradek GT, Hetherington AM, Stakhovskaya O (2011) Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats. J Comp Neurol 519:1526–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leake PA, Stakhovskaya O, Hetherington A, Rebscher SJ, Bonham B (2013) Effects of brain-derived neurotrophic factor (BDNF) and electrical stimulation on survival and function of cochlear spiral ganglion neurons in deafened, developing cats. J Assoc Res Otolaryngol 14:187–211

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenoir M, Daudet N, Humbert G, Renard N, Gallego M, Pujol R, Eybalin M, Vago P (1999) Morphological and molecular changes in the inner hair cell region of the rat cochlea after amikacin treatment. J Neurocytol 28:925–937

    Article  CAS  PubMed  Google Scholar 

  • Long CJ, Holden TA, McClelland GH, Parkinson WS, Shelton C, Kelsall DC, Smith ZM (2014) Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. J Assoc Res Otolaryngol 15:293–304

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden SL, Ding D, Jiang H, Salvi RJ (2004) Time course of efferent fiber and spiral ganglion cell degeneration following complete hair cell loss in the chinchilla. Brain Res 997:40–51

    Article  CAS  PubMed  Google Scholar 

  • McGuinness SL, Shepherd RK (2005) Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol 26:1064–1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Menardo J, Tang Y, Ladrech S, Lenoir M, Casas F, Michel C, Bourien J, Ruel J, Rebillard G, Maurice T, Puel JL, Wang J (2012) Oxidative stress, inflammation, and autophagic stress as the key mechanisms of premature age-related hearing loss in SAMP8 mouse cochlea. Antioxid Redox Signal 16:263–274

    Article  CAS  PubMed  Google Scholar 

  • Morrison D, Schindler RA, Wersall J (1975) A quantitative analysis of the afferent innervation of the organ of corti in guinea pig. Acta Otolaryngol 79:11–23

    Article  CAS  PubMed  Google Scholar 

  • Nadol JB Jr, Young YS, Glynn RJ (1989) Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol 98:411–416

    Article  PubMed  Google Scholar 

  • O'Malley JT, Nadol JB, Jr., McKenna MJ (2016) Anti CD163+, Iba1+, and CD68+ cells in the adult human inner ear: normal distribution of an unappreciated class of macrophages/microglia and implications for inflammatory otopathology in humans. Otol Neurotol 37:99–108

  • Parkinson DB, Bhaskaran A, Arthur-Farraj P, Noon LA, Woodhoo A, Lloyd AC, Feltri ML, Wrabetz L, Behrens A, Mirsky R, Jessen KR (2008) c-Jun is a negative regulator of myelination. J Cell Biol 181:625–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinyon JL, Tadros FS, Froud KE, Wong ACW, Tompson IT, Crawford EN, Ko M, Morris R, Klugmann M, Housley GD (2014) Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med 6

  • Puel JL, Pujol R, Tribillac F, Ladrech S, Eybalin M (1994) Excitatory amino acid antagonists protect cochlear auditory neurons from excitotoxicity. J Comp Neurol 341:241–256

    Article  CAS  PubMed  Google Scholar 

  • Raphael Y, Kim YH, Osumi Y, Izumikawa M, (2007) Non-sensory cells in the deafened organ of Corti: approaches for repair. Int J Dev Biol 51(6-7):649-54

  • Richardson RT, O'Leary S, Wise A, Hardman J, Clark G (2005) A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support. Hear Res 204:37–47

    Article  CAS  PubMed  Google Scholar 

  • Romero E, Cuisenaire O, Denef JF, Delbeke J, Macq B, Veraart C (2000) Automatic morphometry of nerve histological sections. J Neurosci Methods 97:111–122

    Article  CAS  PubMed  Google Scholar 

  • Sato E, Shick HE, Ransohoff RM, Hirose K (2010) Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. J Assoc Res Otolaryngol 11:223–234

    Article  PubMed  Google Scholar 

  • Schecterson LC, Bothwell M (1994) Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear. Hear Res 73:92–100

    Article  CAS  PubMed  Google Scholar 

  • Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676

    Article  CAS  PubMed  Google Scholar 

  • Seyyedi M, Viana LM, Nadol JB Jr (2014) Within-subject comparison of word recognition and spiral ganglion cell count in bilateral cochlear implant recipients. Otol Neurotol 35(8):1446-1450.

  • Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–144

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Coco A, Epp SB, Crook JM (2005) Chronic depolarization enhances the trophic effects of brain-derived neurotrophic factor in rescuing auditory neurons following a sensorineural hearing loss. J Comp Neurol 486:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh B, Xu QG, Franz CK, Zhang R, Dalton C, Gordon T, Verge VM, Midha R, Zochodne DW (2012) Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg 116:498–512

    Article  PubMed  Google Scholar 

  • Spoendlin H (1975) Retrograde degeneration of the cochlear nerve. Acta Otolaryngol 79:266–275

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H, Suter R (1976) Regeneration in the VIII nerve. Acta Otolaryngol 81:228–236

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin H, Schrott A (1989) Analysis of the human auditory nerve. Hear Res 43:25–38

    Article  CAS  PubMed  Google Scholar 

  • Stankovic K, Rio C, Xia A, Sugawara M, Adams JC, Liberman MC, Corfas G (2004) Survival of adult spiral ganglion neurons requires erbB receptor signaling in the inner ear. J Neurosci 24:8651–8661

    Article  CAS  PubMed  Google Scholar 

  • Strominger RN, Bohne BA, Harding GW (1995) Regenerated nerve fibers in the noise-damaged chinchilla cochlea are not efferent. Hear Res 92:52–62

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Yu H, Honglin M, Ni W, Zhang Y, Guo L, He Y, Xue Z, Ni Y, Li J, Feng Y, Chen Y, Shao R, Chai R, Li H (2015) Inhibition of the activation and recruitment of microglia-like cells protects against neomycin-induced ototoxicity. Mol Neurobiol 51:252–267

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Shepherd RK (2006) Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75 neurotrophin receptor signaling. Am J Pathol 169:528–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terayama Y, Kaneko K, Tanaka K, Kawamoto K (1979) Ultrastructural changes of the nerve elements following disruption of the organ of Corti. II. Nerve elements outside the organ of Corti. Acta Otolaryngol 88:27–36

    Article  CAS  PubMed  Google Scholar 

  • Toesca A (1996) Central and peripheral myelin in the rat cochlear and vestibular nerves. Neurosci Lett 221:21–24

    Article  CAS  PubMed  Google Scholar 

  • van Loon MC, Ramekers D, Agterberg MJ, de Groot JC, Grolman W, Klis SF, Versnel H (2013) Spiral ganglion cell morphology in guinea pigs after deafening and neurotrophic treatment. Hear Res 298:17–26

    Article  PubMed  Google Scholar 

  • Waaijer L, Klis SF, Ramekers D, Van Deurzen MH, Hendriksen FG, Grolman W (2013) The peripheral processes of spiral ganglion cells after intracochlear application of brain-derived neurotrophic factor in deafened guinea pigs. Otol Neurotol 34:570–578

  • Webster M, Webster DB (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res 212:17–30

    Article  CAS  PubMed  Google Scholar 

  • Wise AK, Richardson R, Hardman J, Clark G, O'Leary S (2005) Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J Comp Neurol 487:147–165

    Article  CAS  PubMed  Google Scholar 

  • Wise AK, Hume CR, Flynn BO, Jeelall YS, Suhr CL, Sgro BE, O'Leary SJ, Shepherd RK, Richardson RT (2010) Effects of localized neurotrophin gene expression on spiral ganglion neuron resprouting in the deafened cochlea. Mol Ther 18:1111–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu SA, Shepherd RK, Chen Y, Clark GM (1993) Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear Res 70:205–215

    Article  CAS  PubMed  Google Scholar 

  • Ylikoski J, Wersall J, Bjorkroth B (1975) Degeneration of neural elements in the cochlea of the guinea pig after damage to the organ of Corti by ototoxic antibiotics. Acta Otolaryngol (Stockh) Suppl 326:23–41

    Google Scholar 

  • Ylikoski J, Pirvola U, Moshnyakov M, Palgi J, Arumae U, Saarma M (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear. Hear Res 65:69–78

    Article  CAS  PubMed  Google Scholar 

  • Zilberstein Y, Liberman MC, Corfas G (2012) Inner hair cells are not required for survival of spiral ganglion neurons in the adult cochlea. J Neurosci 32:405–410

  • Zimmermann CE, Burgess BJ, Nadol JB Jr (1995) Patterns of degeneration in the human cochlear nerve. Hear Res 90:192–201

Download references

Acknowledgements

We are grateful for contributions made by Cong Ho, Anna Friedhuber, Marie Camilleri, Nicole Critch, Alison Neil, Stephen Asquith, Sarah Ellis, Maria Clarke, Prue Nielsen, and Ella Trang. The authors would like to acknowledge the funding support from the NIDCD (HHS-N-263-2007-00053-c and R01DC015031) and the NHMRC (GNT1064375). The Bionics Institute acknowledges the support it receives from the Victorian Government through its Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Wise.

Ethics declarations

The experimental procedures were approved by the Animal Research Ethics Committee of the Royal Victorian Eye and Ear Hospital in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals and conformed to the Code of Practice of the National Health and Medical Research Council of Australia.

Conflict of Interest

The authors declare that they have no conflict of interest.

Role of Authors

All authors had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: AKW, RP, TGL, JBF, and RKS. Acquisition of data: AKW, RP, and TGL. Analysis and interpretation of data: AKW, RP, TGL, JBF, and RKS. Drafting of the manuscript: AKW, RP, TGL, JBF, and RKS. Critical revision of the manuscript for important intellectual content: AKW, RP, TGL, JBF, and RKS. Statistical analysis: AKW and TGL. Obtained funding: RKS and AKW. Study supervision: AKW.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wise, A.K., Pujol, R., Landry, T.G. et al. Structural and Ultrastructural Changes to Type I Spiral Ganglion Neurons and Schwann Cells in the Deafened Guinea Pig Cochlea. JARO 18, 751–769 (2017). https://doi.org/10.1007/s10162-017-0631-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-017-0631-y

Keywords

Navigation