Skip to main content
Log in

Six Degrees of Auditory Spatial Separation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The location of a sound is derived computationally from acoustical cues rather than being inherent in the topography of the input signal, as in vision. Since Lord Rayleigh, the descriptions of that representation have swung between “labeled line” and “opponent process” models. Employing a simple variant of a two-point separation judgment using concurrent speech sounds, we found that spatial discrimination thresholds changed nonmonotonically as a function of the overall separation. Rather than increasing with separation, spatial discrimination thresholds first declined as two-point separation increased before reaching a turning point and increasing thereafter with further separation. This “dipper” function, with a minimum at 6 ° of separation, was seen for regions around the midline as well as for more lateral regions (30 and 45 °). The discrimination thresholds for the binaural localization cues were linear over the same range, so these cannot explain the shape of these functions. These data and a simple computational model indicate that the perception of auditory space involves a local code or multichannel mapping emerging subsequent to the binaural cue coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  • Ahveninen J, Kopco N, Jaaskelainen IP (2014) Psychophysics and neuronal bases of sound localization in humans. Hear Res 307:86–97

    Article  PubMed  Google Scholar 

  • Ashida G, Carr CE (2011) Sound localization: Jeffress and beyond. Curr Opin Neurobiol 21:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Best V, Schaik A, Carlile S (2004) Separation of concurrent broadband sound sources by human listeners. J Acoust Soc Am 115:324–336

    Article  PubMed  Google Scholar 

  • Best V, Ozmeral E, Gallun FJ, Sen K, Shinn-Cunningham BG (2005) Spatial unmasking of birdsong in human listeners: energetic and informational factors. J Acoust Soc Am 118:3766–3773

    Article  PubMed  Google Scholar 

  • Bizley JK, Cohen YE (2013) The what, where and how of auditory-object perception. Nat Rev Neurosci 14:693–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization. MIT Press, Cambridge

    Google Scholar 

  • Bregman AS (1990) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Burr D, Silva O, Cicchini GM, Banks MS, Morrone MC (2009) Temporal mechanisms of multimodal binding. Proc Biol Sci 276:1761–1769

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlile S, Pralong D (1994) The location-dependent nature of perceptually salient features of the human head-related transfer function. J Acoust Soc Am 95:3445–3459

    Article  Google Scholar 

  • Carlile S, Leong P, Hyams S (1997) The nature and distribution of errors in the localization of sounds by humans. Hear Res 114:179–196

    Article  CAS  PubMed  Google Scholar 

  • Carlile S, Hyams S, Delaney S (2001) Systematic distortions of auditory space perception following prolonged exposure to broadband noise. J Acoust Soc Am 110:416–425

    Article  CAS  PubMed  Google Scholar 

  • Carlile S, Martin R, McAnnaly K (2005) Spectral information in sound localisation. In: Irvine DRF, Malmierrca M (eds) Auditory spectral processing. Elsevier, San Diego, pp 399–434

    Chapter  Google Scholar 

  • Chandler DW, Grantham DW (1992) Minumum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, souce azimuth and velocity. J Acoust Soc Am 91:1624–1636

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1981) Perceptual grouping of speech components differning in fundamental frequency and onset-time. Q J Exp Psychol 33:185–207

    Article  Google Scholar 

  • Darwin CJ (2008) Listening to speech in the presence of other sounds. Phil Trans R Soc B: Biol Sci 363:1011–1021

    Article  CAS  Google Scholar 

  • Day ML, Delgutte B (2013) Decoding sound source location and separation using neural population activity patterns. J Neurosci 33:15837–15847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding N, Simon JZ (2012) Emergence of neural encoding of auditory objects while listening to competing speakers. PNAS 109:11854–11859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingle RN, Hall SE, Phillips DP (2010) A midline azimuthal channel in human spatial hearing. Hear Res 268:67–74

    Article  PubMed  Google Scholar 

  • Dingle RN, Hall SE, Phillips DP (2012) The three-channel model of sound localization mechanisms: interaural level differences. J Acoust Soc Am 131:4023–4029

    Article  PubMed  Google Scholar 

  • Divenyi PL, Oliver SK (1989) Resolution of steady-state sounds in simulated auditory space. J Acoust Soc Am 85:2042–2051

    Article  Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J Acoust Soc Am 116:3075–3089

    Article  PubMed  Google Scholar 

  • Foley JM (1994) Human luminance pattern-vision mechanisms: masking experiments require a new model. J Opt Soc Am A Opt Image Sci Vis, In, pp 1710–1719

    Google Scholar 

  • Foley JM, Legge GE (1981) Contrast detection and near-threshold discrimination in human vision. Vis Res 21:1041–1053

    Article  CAS  PubMed  Google Scholar 

  • Goossens HH, van Opstal AJ (1999) Influence of head position on the spatial representation of acoustic targets. J Neurophysiol 81:2720–2736

    CAS  PubMed  Google Scholar 

  • Grantham DW, Hornsby BWY, Erpenbeck EA (2003) Auditory spatial resolution in horizontal, vertical, and diagonal planes. J Acoust Soc Am 114:1009–1022

    Article  PubMed  Google Scholar 

  • Griffiths TD, Warren JD (2004) What is an auditory object? Nat Rev Neurosci 5:887–892

    Article  CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Demaio J (1975) Difference thresholds for interaural delay. J Acoust Soc Am 57:181–187

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Dye RH, Nuetzel JM, Aronow H (1977) Difference thresholds for interaural intensity. J Acoust Soc Am 61:829–834

    Article  CAS  PubMed  Google Scholar 

  • Hanna TE, Vongierke SM, Green DM (1986) Detection and intensity discrimination of a sinusoind. J Acoust Soc Am 80:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430:682–686

    Article  CAS  PubMed  Google Scholar 

  • Hartmann WM, Rakerd B (1989) On the minimum audible angle—a decision theory approach. J Acoust Soc Am 85:2031–2041

    Article  CAS  PubMed  Google Scholar 

  • Hill NI, Darwin CJ (1996) Lateralization of a perturbed harmonic: effects of onset asynchrony and mistuning. J Acoust Soc Am 100:2352–2364

    Article  CAS  PubMed  Google Scholar 

  • King AJ, Middlebrooks JC (2010) Cortical representation of auditory space. In: Weiner JA, Schreiner CE (eds) The auditory cortex. LLC: Springer Science + Business Media, pp 329–341

  • Knudsen EI, Konishi M, Pettigrew JD (1977) Receptive fields of auditory neurons in the owl. Science (Washington, DC) 198:1278–1280

    Article  CAS  Google Scholar 

  • Kopco N, Best V, Carlile S (2010) Speech localisation in a multitalker mixture. J Acoust Soc Am 127:1450–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the horizontal plane. J Acoust Soc Am 62:157–167

    Article  Google Scholar 

  • Lee AKC, Deane-Pratt A, Shinn-Cunningham BG (2009) Localization interference between components in an auditory scene. J Acoust Soc Am 126:2543–2555

    Article  PubMed  PubMed Central  Google Scholar 

  • Legge GE, Foley JM (1980) Contrast masking in human vision. J Opt Soc Am 70:1458–1471

    Article  CAS  PubMed  Google Scholar 

  • Levi DM, Jiang BC, Klein SA (1990) Spatial interval discrimination with blurred lines—black and white are separate but not equal at multiple spatial scales. Vis Res 30:1735–1750

    Article  CAS  PubMed  Google Scholar 

  • Ley I, Haggard P, Yarrow K (2009) Optimal integration of auditory and vibrotactile information for judgments of temporal order. J Exp Psychol Hum Percept Perform 35:1005–1019

    Article  PubMed  Google Scholar 

  • Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111:2219–2236

    Article  PubMed  Google Scholar 

  • Maddox RK, Billimoria CP, Perrone BP, Shinn-Cunningham BG, Sen K (2012) Competing sound sources reveal spatial effects in cortical processing. PLoS Biol 10:e1001319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4:396–401

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks JC, Bremen P (2013) Spatial stream segregation by auditory cortical neurons. J Neurosci 33:10986–11001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks JC, Onsan ZA (2012) Stream segregation with high spatial acuity. J Acoust Soc Am 132:3896–3911

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108

    Article  CAS  PubMed  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246

    Article  Google Scholar 

  • Morgan M, Chubb C, Solomon JA (2008) A “dipper” function for texture discrimination based on orientation variance. JOV 8:1–8

    Google Scholar 

  • Orchard-Mills E, Leung J, Burr D, Morrone C, Wufong E, Carlile S, Alais D (2013) Mechanisms for detecting coincidence of audio and visual spatial signals. Multisens Res 26:333–345

    Article  PubMed  Google Scholar 

  • Palmer AR, King AJ (1982) The representation of auditory space in the mammalian superior colliculus. Nature 299:248–249

    Article  CAS  PubMed  Google Scholar 

  • Perrott DR (1984) Concurrent minimum audible angle - a reexamination of the concept of auditory spatial acuity. J Acoust Soc Am 75:1201–1206

    Article  CAS  PubMed  Google Scholar 

  • Pfafflin SM, Mathews MV (1962) Energy-detection model for monaural auditory detection. J Acoust Soc Am 34:1842–1853

    Article  Google Scholar 

  • Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747

    Article  CAS  PubMed  Google Scholar 

  • Raab DH, Osman E, Rich E (1963) Intensity discrimination, the “pedestal” effect, and “negative masking” with white‐noise stimuli. J Acoust Soc Am 35:1053

    Article  Google Scholar 

  • Rakerd B, Hartmann WM (2010) Localization of sound in rooms. V. Binaural coherence and human sensitivity to interaural time differences in noise. J Acoust Soc Am 128:3052–3063

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz A, McDermott JH, Shinn-Cunningham B (2012) Spatial cues alone produce inaccurate sound segregation: the effect of interaural time differences. J Acoust Soc Am 132:357–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology. Springer, Berlin, pp 455–490

    Google Scholar 

  • Shinn-Cunningham BG (2008) Object-based auditory and visual attention. Trends Cogn Sci 12:182–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Simpson WA, Finsten BA (1995) Pedestal effect in visual motion discrimination. J Opt Soc Am A Opt Image Sci Vis 12:2555–2563

    Article  CAS  PubMed  Google Scholar 

  • Simpson BD, Brungart DS, Iyer N, Gilkey RH, Hamil JT (2006) Detection and localization of speech in the presence of competing speech signals. In: Proc. of ICAD

  • Solomon JA (2009) The history of dipper functions. Atten Percept Psychophys 71:435–443

    Article  PubMed  Google Scholar 

  • Stecker GC (2013) Effects of the stimulus spectrum on temporal weighting of binaural differences. Proceedings of Meetings on Acoustics 19

  • Stecker GC, Ostreicher JD, Brown AD (2013) Temporal weighting functions for interaural time and level differences. III. Temporal weighting for lateral position judgments. J Acoust Soc Am 134:1242–1252

    Article  PubMed  PubMed Central  Google Scholar 

  • Stellmack MA, Byrne AJ, Viemeister NF (2010) Extracting binaural information from simultaneous targets and distractors: effects of amplitude modulation and asynchronous envelopes. J Acoust Soc Am 128:1235–1244

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolhurst DJ, Barfield LP (1978) Interactions between spatial-frequency channels. Vis Res 18:951–958

    Article  CAS  PubMed  Google Scholar 

  • Walker KMM, Bizley JK, King AJ, Schnupp JWH (2011) Multiplexed and robust representations of sound features in auditory cortex. J Neurosci 31:14565–14576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wandell BA, Brewer AA, Dougherty RF (2005) Visual field map clusters in human cortex. Phil Trans R Soc B Biol Sci 360:693–707

    Article  Google Scholar 

  • Watt RJ, Morgan MJ (1983) The recognition and representation of edge blur: evidence for spatial primitives in human vision. In: Vis Res, pp 1465–1477

  • Wichmann FA, Hill NJ (2001) The psychometric function: I. Fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313

    Article  CAS  PubMed  Google Scholar 

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661

    Article  CAS  PubMed  Google Scholar 

  • Woods WS, Colburn HS (1992) Test of a model of auditory object formation using intensity and interaural time difference discrimination. J Acoust Soc Am 91:2894–2902

    Article  CAS  PubMed  Google Scholar 

  • Wozny DR, Shams L (2011) Computational characterization of visually induced auditory spatial adaptation. Front Integr Neurosci 5:75. doi:10.3389/fnint.2011.00075

  • Yost WA, Dye RH (1988) Discrimination of interaural differences of level as a function of frequency. J Acoust Soc Am 83:1846–1851

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council Grants DP110104579 to Carlile and DP120101474 to Alais. The authors would like to thank Ella Fu Wong for experimental assistance and Jennifer Bizley and David McAlpine for comments and discussion on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Carlile.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlile, S., Fox, A., Orchard-Mills, E. et al. Six Degrees of Auditory Spatial Separation. JARO 17, 209–221 (2016). https://doi.org/10.1007/s10162-016-0560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0560-1

Keywords

Navigation