Skip to main content
Log in

Elevated Acoustic Startle Responses in Humans: Relationship to Reduced Loudness Discomfort Level, but not Self-Report of Hyperacusis

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Increases in the acoustic startle response (ASR) of animals have been reported following experimental manipulations to induce tinnitus, an auditory disorder defined by phantom perception of sound. The increases in ASR have been proposed to signify the development of hyperacusis, a clinical condition defined by intolerance of normally tolerable sound levels. To test this proposal, the present study compared ASR amplitude to measures of sound-level tolerance (SLT) in humans, the only species in which SLT can be directly assessed. Participants had clinically normal/near-normal hearing thresholds, were free of psychotropic medications, and comprised people with tinnitus and without. ASR was measured as eyeblink-related electromyographic activity in response to a noise pulse presented at a range of levels and in two background conditions (noise and quiet). SLT was measured as loudness discomfort level (LDL), the lowest level of sound deemed uncomfortable, and via a questionnaire on the loudness of sounds in everyday life. Regardless of tinnitus status, ASR amplitude at a given stimulus level increased with decreasing LDL, but showed no relationship to SLT self-reported via the questionnaire. These relationships (or lack thereof) could not be attributed to hearing threshold, age, anxiety, or depression. The results imply that increases in ASR in the animal work signify decreases in LDL specifically and may not correspond to the development of hyperacusis as would be self-reported by a clinic patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  • Anari M, Axelsson A, Eliasson A, Magnusson L (1999) Hypersensitivity to sound—questionnaire data, audiometry and classification. Scand Audiol 28:219–230

    Article  CAS  PubMed  Google Scholar 

  • Baguley DM (2003) Hyperacusis. J R Soc Med 96:582–585

    Article  PubMed  PubMed Central  Google Scholar 

  • Bläsing L, Goebel G, Flötzinger U, Berthold A, Kröner-Herwig B (2010) Hypersensitivity to sound in tinnitus patients: an analysis of a construct based on questionnaire and audiological data. Int J Audiol 49:518–526

    Article  PubMed  Google Scholar 

  • Blumenthal TD, Cuthbert BN, Filion DL, Hackley S, Lipp OV, van Boxtel A (2005) Committee report: Guidelines for human startle eyeblink electromyographic studies. Psychophysiology 42:1–15

    Article  PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharm (Berlin) 156:234–258

    Article  CAS  Google Scholar 

  • Chen G, Lee C, Sandridge SA, Butler HM, Manzoor NF, Kaltenbach JA (2013) Behavioral evidence for possible simultaneous induction of hyperacusis and tinnitus following intense sound exposure. J Assoc Res Otolaryngol 14:413–424. doi:10.1007/s10162-013-0375-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox RM, Alexander GC, Taylor IM, Gray GA (1997) The contour test of loudness perception. Ear Hear 18:388–400

    Article  CAS  PubMed  Google Scholar 

  • Davis M, Falls WA, Campeau S, Kim M (1993) Fear-potentiated startle: a neural and pharmacological analysis. Behav Brain Res 58:175–198

    Article  CAS  PubMed  Google Scholar 

  • Filion PR, Margolis RH (1992) Comparison of clinical and real-life judgments of loudness discomfort. J Am Acad Audiol 3:193–199

    CAS  PubMed  Google Scholar 

  • Fournier P, Hébert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23. doi:10.1016/j.heares.2012.05.011

    Article  PubMed  Google Scholar 

  • Gallo FJ, Klein-Tasman BP, Gaffrey MS, Curran P (2008) Expecting the worst: observations of reactivity to sound in young children with Williams syndrome. Res Dev Disabil 29:567–581. doi:10.1016/j.ridd.2007.09.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer MA, Braff DL (1987) Startle habituation and sensorimotor gating in schizophrenia and related animal models. Schizophr Bull 13:643–668

    Article  CAS  PubMed  Google Scholar 

  • Grillon C (2002) Startle reactivity and anxiety disorders: aversive conditioning, context, and neurobiology. Biol Psychiatry 52:958–975

    Article  PubMed  Google Scholar 

  • Grillon C, Morgan CA, Southwick SM, Davis M, Charney S (1996) Baseline startle amplitude and prepulse inhibition in Vietnam veterans with posttraumatic stress disorder. Psychiatry Res 64:169–178

    Article  CAS  PubMed  Google Scholar 

  • Gu JW, Halpin C, Nam EC, Levine RA, Melcher JR (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370

    Article  PubMed  PubMed Central  Google Scholar 

  • Hébert S, Fournier P, Noreña A (2013) The auditory sensitivity is increased in tinnitus ears. J Neurosci 33:2356–2364. doi:10.1523/JNEUROSCI.3461-12.2013

    Article  PubMed  Google Scholar 

  • Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564. doi:10.1152/jn.00184.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Ison JR, Allen PD, O'Neill WE (2007) Age-related hearing loss in C57BL/6J mice has both frequency-specific and non-frequency-specific components that produce a hyperacusis-like exaggeration of the acoustic startle reflex. J Assoc Res Otolaryngol 8:539–550

    Article  PubMed  PubMed Central  Google Scholar 

  • Jastreboff PJ, Jastreboff MM (2004) Decreased sound tolerance. In: Snow JB (ed) Tinnitus: theory and management. BC Decker, Lewiston, pp 8–15

    Google Scholar 

  • Ludewig S, Geyer MA, Ramseier M, Vollenweider FX, Rechsteiner E, Cattapan-Ludewig K (2005) Information-processing deficits and cognitive dysfunction in panic disorder. J Psychiatry Neurosci 30:37–43

    PubMed  PubMed Central  Google Scholar 

  • Madsen GF, Bilenberg N, Cantio C, Oranje B (2014) Increased prepulse inhibition and sensitization of the startle reflex in autistic children. Autism Res 7:94–103. doi:10.1002/aur.1337

    Article  PubMed  Google Scholar 

  • Meincke U, Light GA, Geyer MA, Braff DL, Gouzoulis-Mayfrank E (2004) Sensitization and habituation of the acoustic startle reflex in patients with schizophrenia. Psychiatry Res 126:51–61

    Article  PubMed  Google Scholar 

  • Miller MW, Gronfier C (2006) Diurnal variation of the startle reflex in relation to HPA-axis activity in humans. Psychophysiology 43:297–301. doi:10.1111/j.1469-8986.2006.00400.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman CW, Jacobson GP, Spitzer JB (1996) Development of the tinnitus handicap inventory. Arch Otolaryngol Head Neck Surg 122:143–148

    Article  CAS  PubMed  Google Scholar 

  • Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH (1996) The inventory of depressive symptomatology (IDS): psychometric properties. Psychol Med 26:477–486

    Article  CAS  PubMed  Google Scholar 

  • Salloum RH, Yurosko C, Santiago L, Sandridge SA, Kaltenbach JA (2014) Induction of enhanced acoustic startle response by noise exposure: dependence on exposure conditions and testing parameters and possible relevance to hyperacusis. PLoS ONE 9(10):e111747. doi:10.1371/journal.pone.0111747

    Article  PubMed  PubMed Central  Google Scholar 

  • Schecklmann M, Landgrebe M, Langguth B, TRI Database Study Group (2014) Phenotypic characteristics of hyperacusis in tinnitus. PLoS ONE 9(1):e86944. doi:10.1371/journal.pone.0086944

    Article  PubMed  PubMed Central  Google Scholar 

  • Spielberger CD (1983) State-trait anxiety inventory. Mind Garden, Inc, Menlo Park

    Google Scholar 

  • Sun W, Lu J, Stolzberg D, Gray L, Deng A, Lobarinas E, Salvi RJ (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334. doi:10.1016/j.neuroscience.2008.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun W, Deng A, Jayaram A, Gibson B (2012) Noise exposure enhances auditory cortex responses related to hyperacusis behavior. Brain Res 1485:108–116. doi:10.1016/j.brainres.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  • Swerdlow NR, Sprock J, Light GA, Cadenhead K, Calkins ME, Dobie DJ, Freedman R, Green MF, Greenwood TA, Gur RE, Mintz J, Olincy A, Neuchterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL (2007) Multi-site studies of acoustic startle and prepulse inhibition in humans: initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophr Res 92:237–251. doi:10.1016/j.schres.2007.01.012

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Parrish J (2008) Gap detection methods for assessing salicylate-induced tinnitus and hyperacusis in rats. Am J Audiol 17:S185–S192. doi:10.1044/1059-0889(2008/08-0006

    Article  PubMed  Google Scholar 

  • Tyler RS, Bergan C, Preece J, Nagase S (2003) Audiologische Messmethoden der Hyperakusis. In: Nelting M (ed) Hyperakusis 6. Georg Thieme Verlag, Stuttgart, pp 39–46

    Google Scholar 

  • Tyler RS, Pienkowski M, Rojas Roncancio E, Jun JJ, Brozoski T, Dauman N, Barros Coelho C, Andersson G, Keiner AJ, Cacace AT, Martin N, Moore BCJ (2014) A review of hyperacusis and future directions: Part I. Definitions and manifestations. Am J Audiol 23:402–417

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank John J. Guinan and M. Charles Liberman for helpful comments on a previous version of the manuscript. They are grateful for the help of Barbara Norris in preparation of the figures and tables. They thank the study volunteers for their time and effort. The work was supported by NIH R21 DC012407, the Tinnitus Research Consortium, and NIH P30DC005209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inge M. Knudson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knudson, I.M., Melcher, J.R. Elevated Acoustic Startle Responses in Humans: Relationship to Reduced Loudness Discomfort Level, but not Self-Report of Hyperacusis. JARO 17, 223–235 (2016). https://doi.org/10.1007/s10162-016-0555-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0555-y

Keywords

Navigation