Skip to main content

Advertisement

Log in

Acoustic Temporal Modulation Detection in Normal-Hearing and Cochlear Implanted Listeners: Effects of Hearing Mechanism and Development

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

ABSTRACT

Temporal modulation detection ability matures over many years after birth and may be particularly sensitive to experience during this period. Profound hearing loss during early childhood might result in greater perceptual deficits than a similar loss beginning in adulthood. We tested this idea by measuring performance in temporal modulation detection in profoundly deaf children and adults fitted with cochlear implants (CIs). At least two independent variables could constrain temporal modulation detection performance in children with CIs: altered encoding of modulation information due to the CI-auditory nerve interface, and atypical development of central processing of sound information provided by CIs. The effect of altered encoding was investigated by testing subjects with one of two different hearing mechanisms (normal hearing vs. CI) and the effect of atypical development was studied by testing two different age groups. All subjects were tested for their ability to detect acoustic temporal modulations of sound amplitude. A comparison of the slope, or cutoff frequency, of the temporal modulation transfer functions (TMTFs) among the four subject groups revealed that temporal resolution was mainly constrained by hearing mechanism: normal-hearing listeners could detect smaller amplitude modulations at high modulation frequencies than CI users. In contrast, a comparison of the height of the TMTFs revealed a significant interaction between hearing mechanism and age group on overall sensitivity to temporal modulation: sensitivity was significantly poorer in children with CIs, relative to the other three groups. Results suggest that there is an age-specific vulnerability of intensity discrimination or non-sensory factors, which subsequently affects sensitivity to temporal modulation in prelingually deaf children who use CIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2

Similar content being viewed by others

References

  • Abdala C, Keefe DH (2012) Morphological and functional ear development. Springer Handb Audit 42:19–59

    Article  Google Scholar 

  • Anderson ES, Nelson DA, Kreft H, Nelson PB, Oxenham AJ (2011) Comparing spatial tuning curves, spectral ripple resolution, and speech perception in cochlear implant users. J Acoust Soc Am 130:364–375

    Article  PubMed Central  PubMed  Google Scholar 

  • Anderson ES, Oxenham AJ, Nelson PB, Nelson DA (2012) Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users. J Acoust Soc Am 132:3925–3934

    Article  PubMed Central  PubMed  Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134

    Article  CAS  PubMed  Google Scholar 

  • Bavelier D, Tomann A, Hutton C, Mitchell T, Corina D, Liu G, Neville H (2000) Visual attention to the periphery is enhanced in congenitally deaf individuals. J Neurosci 20:RC93

    CAS  PubMed  Google Scholar 

  • Bavelier D, Brozinsky C, Tomann A, Mitchell T, Neville H, Liu G (2001) Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J Neurosci 21:8931–8942

    CAS  PubMed  Google Scholar 

  • Beer J, Kronenberger WG, Castellanos I, Colson BG, Henning SC, Pisoni DB (2014) Executive functioning skills in preschool-age children with cochlear implants. Journal of speech, language, and hearing research

  • Buss E, Hall JW 3rd, Grose JH (2012) Development of auditory coding as reflected in psychophysical performance. In: Werner LA (ed) Human Auditory Development, Springer Handbook of Auditory Research. Springer Science Business Media, LLC, pp 107–136

    Google Scholar 

  • Cazals Y, Pelizzone M, Saudan O, Boex C (1994) Low-pass filtering in amplitude-modulation detection associated with vowel and consonant identification in subjects with cochlear implants. J Acoust Soc Am 96:2048–2054

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1992) Statistical power analysis. Curr Dir Psychol Sci 1(3):98–101

    Article  Google Scholar 

  • Dahl HH, Wake M, Sarant J, Poulakis Z, Siemering K, Blamey P (2003) Language and speech perception outcomes in hearing-impaired children with and without connexin 26 mutations. Audiol Neurootol 8:263–268

    Article  PubMed  Google Scholar 

  • Davidson LS, Geers AE, Blamey PJ, Tobey EA, Brenner CA (2011) Factors contributing to speech perception scores in long-term pediatric cochlear implant users. Ear Hear 32:19S–26S

    Article  PubMed Central  PubMed  Google Scholar 

  • Donaldson GS, Nelson DA (2000) Place-pitch sensitivity and its relation to consonant recognition by cochlear implant listeners using the MPEAK and SPEAK speech processing strategies. J Acoust Soc Am 107:1645–1658

    Article  CAS  PubMed  Google Scholar 

  • Donaldson GS, Viemeister NF (2000) Intensity discrimination and detection of amplitude modulation in electric hearing. J Acoust Soc Am 108:760–763

    Article  CAS  PubMed  Google Scholar 

  • Dowell RC, Dettman SJ, Blamey PJ, Barker EJ, Clark GM (2002) Speech perception in children using cochlear implants: prediction of long-term outcomes. Cochlear Implants Int 3:1–18

    Article  PubMed  Google Scholar 

  • Drennan WR, Longnion JK, Ruffin C, Rubinstein JT (2008) Discrimination of Schroeder-phase harmonic complexes by normal-hearing and cochlear-implant listeners. J Assoc Res Otolaryngol: JARO 9:138–149

    Article  PubMed Central  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994) Effect of reducing slow temporal modulations on speech reception. J Acoust Soc Am 95:2670–2680

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ, Moore JK (2012) Morphological and functional development of the auditory nervous system. Springer Handb Audit 42:61–105

    Article  Google Scholar 

  • Formby C, Muir K (1988) Modulation and gap detection for broadband and filtered noise signals. J Acoust Soc Am 84:545–550

    Article  CAS  PubMed  Google Scholar 

  • Fu QJ (2002) Temporal processing and speech recognition in cochlear implant users. Neuroreport 13:1635–1639

    Article  PubMed  Google Scholar 

  • Ganek H, Robbins AM, Niparko JK (2012) Language outcomes after cochlear implantation. Otolaryng Clin N Am 45:173−+

    Article  Google Scholar 

  • Geers AE (2004) Speech, language, and reading skills after early cochlear implantation. Arch Otolaryngol--Head Neck Surg 130:634–638

    Article  PubMed  Google Scholar 

  • Geers A, Brenner C, Davidson L (2003) Factors associated with development of speech perception skills in children implanted by age five. Ear Hear 24:24S–35S

    Article  PubMed  Google Scholar 

  • Gnansia D, Lazard DS, Leger AC, Fugain C, Lancelin D, Meyer B, Lorenzi C (2014) Role of slow temporal modulations in speech identification for cochlear implant users. Int J Audiol 53:48–54

    Article  PubMed  Google Scholar 

  • Gordon KA, Papsin BC, Harrison RV (2006) An evoked potential study of the developmental time course of the auditory nerve and brainstem in children using cochlear implants. Audiol Neurootol 11:7–23

    Article  PubMed  Google Scholar 

  • Hall JW 3rd, Grose JH (1994a) Development of temporal resolution in children as measured by the temporal modulation transfer function. J Acoust Soc Am 96:150–154

    Article  PubMed  Google Scholar 

  • Hall JW 3rd, Grose JH (1994b) The effect of conductive hearing loss on the masking-level difference: insert versus standard earphones. J Acoust Soc Am 95:2652–2657

    Article  PubMed  Google Scholar 

  • Hall JW, 3rd, Grose JH, Pillsbury HC (1995) Long-term effects of chronic otitis media on binaural hearing in children. Archives of otolaryngology--head & neck surgery 121:847–852

  • Hallberg LR, Ringdahl A, Holmes A, Carver C (2005) Psychological general well-being (quality of life) in patients with cochlear implants: importance of social environment and age. Int J Audiol 44:706–711

    Article  PubMed  Google Scholar 

  • Halliday LF, Bishop DV (2005) Frequency discrimination and literacy skills in children with mild to moderate sensorineural hearing loss. J Speech Lang Hear Res 48:1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Halliday LF, Bishop DV (2006) Is poor frequency modulation detection linked to literacy problems? A comparison of specific reading disability and mild to moderate sensorineural hearing loss. Brain Lang 97:200–213

    Article  CAS  PubMed  Google Scholar 

  • Henry BA, Turner CW (2003) The resolution of complex spectral patterns by cochlear implant and normal-hearing listeners. J Acoust Soc Am 113:2861–2873

    Article  PubMed  Google Scholar 

  • Henry BA, McKay CM, McDermott HJ, Clark GM (2000) The relationship between speech perception and electrode discrimination in cochlear implantees. J Acoust Soc Am 108:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Henry BA, Turner CW, Behrens A (2005) Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. J Acoust Soc Am 118:1111–1121

    Article  PubMed  Google Scholar 

  • Hess C, Zettler-Greeley C, Godar SP, Ellis-Weismer S, Litovsky RY (2014) The effect of differential listening experience on the development of expressive and receptive language in children with bilateral cochlear implants. Hear. E-pub ahead of print, Ear

    Google Scholar 

  • Holt RF, Kirk KI (2005) Speech and language development in cognitively delayed children with cochlear implants. Ear Hear 26:132–148

    Article  PubMed  Google Scholar 

  • Horn DL, Davis RAO, Pisoni DB, Miyamoto RT (2005) Development of visual attention skills in prelingually deaf children who use cochlear implants. Ear Hear 26:389–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Irwin RJ, Ball AK, Kay N, Stillman JA, Rosser J (1985) The development of auditory temporal acuity in children. Child Dev 56:614–620

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Won JH, Drennan WR, Jameyson E, Miyasaki G, Norton SJ, Rubinstein JT (2012) Psychoacoustic performance and music and speech perception in prelingually deafened children with cochlear implants. Audiol Neurootol 17:189–197

    Article  PubMed Central  PubMed  Google Scholar 

  • Kidd G Jr, Arbogast TL, Mason CR, Walsh M (2002) Informational masking in listeners with sensorineural hearing loss. J Assoc Res Otolaryngol: JARO 3:107–119

    Article  PubMed  Google Scholar 

  • Knutson JF, Wald RL, Ehlers SL, Tyler RS (2000) Psychological consequences of pediatric cochlear implant use. Ann Oto Rhinol Laryngol Suppl 185:109–111

    CAS  Google Scholar 

  • Kronenberger WG, Pisoni DB, Henning SC, Colson BG (2013) Executive functioning skills in long-term users of cochlear implants: a case control study. J Pediatr Psychol 38:902–914

    Article  PubMed Central  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America 49:Suppl 2:467 + 

  • Lindstrom MJ, Bates DM (1990) Nonlinear mixed effects models for repeated measures data. Biometrics 46:673–687

    Article  CAS  PubMed  Google Scholar 

  • Litvak LM, Spahr AJ, Saoji AA, Fridman GY (2007) Relationship between perception of spectral ripple and speech recognition in cochlear implant and vocoder listeners. J Acoust Soc Am 122:982–991

    Article  PubMed  Google Scholar 

  • Manrique M, Cervera-Paz FJ, Huarte A, Molina M (2004) Advantages of cochlear implantation in prelingual deaf children before 2 years of age when compared with later implantation. Laryngoscope 114:1462–1469

    Article  PubMed  Google Scholar 

  • Nicholas JG, Geers AE (2007) Will they catch up? The role of age at cochlear implantation in the spoken language development of children with severe to profound hearing loss. J Speech Lang Hear Res: JSLHR 50:1048–1062

    Article  PubMed Central  PubMed  Google Scholar 

  • Niparko JK, Tobey EA, Thal DJ, Eisenberg LS, Wang NY, Quittner AL, Fink NE, Team CDI (2010) Spoken language development in children following cochlear implantation. JAMA 303:1498–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsho LW, Koch EG, Halpin CF, Carter EA (1987) An observer-based psychoacoustic procedure for use with young infants. Dev Psychol 23:627–640

    Article  Google Scholar 

  • Peterson GE, Lehiste I (1962) Revised CNC lists for auditory tests. J Speech Hear Disord 27:62–70

    Article  CAS  PubMed  Google Scholar 

  • Ponton CW, Eggermont JJ (2001) Of kittens and kids: altered cortical maturation following profound deafness and cochlear implant use. Audiol Neurootol 6:363–380

    Article  CAS  PubMed  Google Scholar 

  • Proksch J, Bavelier D (2002) Changes in the spatial distribution of visual attention after early deafness. J Cogn Neurosci 14:687–701

    Article  PubMed  Google Scholar 

  • Quittner AL, Smith LB, Osberger MJ, Mitchell TV, Katz DB (1994) The impact of audition on the development of visual-attention. Psychol Sci 5:347–353

    Article  Google Scholar 

  • Rance G, McKay C, Grayden D (2004) Perceptual characterization of children with auditory neuropathy. Ear Hear 25:34–46

    Article  PubMed  Google Scholar 

  • Robbins AM, Koch DB, Osberger MJ, Zimmerman-Phillips S, Kishon-Rabin L (2004) Effect of age at cochlear implantation on auditory skill development in infants and toddlers. Arch Otolaryngol 130:570–574

    Article  Google Scholar 

  • Robinson EJ, Davidson LS, Uchanski RM, Brenner CM, Geers AE (2012) A longitudinal study of speech perception skills and device characteristics of adolescent cochlear implant users. J Am Acad Audiol 23:341–349

    Article  PubMed Central  PubMed  Google Scholar 

  • Rothpletz AM, Ashmead DH, Thorpe AM (2003) Responses to targets in the visual periphery in deaf and normal-hearing adults. J Speech Lang Hear Res: JSLHR 46:1378–1386

    Article  PubMed  Google Scholar 

  • Sanes DH, Woolley SM (2011) A behavioral framework to guide research on central auditory development and plasticity. Neuron 72:912–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saoji AA, Litvak L, Spahr AJ, Eddins DA (2009) Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners. J Acoust Soc Am 126:955–958

    Article  PubMed  Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164

    Article  CAS  PubMed  Google Scholar 

  • Smith LB, Quittner AL, Osberger MJ, Miyamoto R (1998) Audition and visual attention: the developmental trajectory in deaf and hearing populations. Dev Psychol 34:840–850

    Article  CAS  PubMed  Google Scholar 

  • Thai-Van H, Cozma S, Boutitie F, Disant F, Truy E, Collet L (2007) The pattern of auditory brainstem response wave V maturation in cochlear-implanted children. Clin Neurophysiol 118:676–689

    Article  PubMed  Google Scholar 

  • Tharpe AM, Ashmead DH (2001) A longitudinal investigation of infant auditory sensitivity. Am J Audiol 10:104–112

    Article  CAS  PubMed  Google Scholar 

  • Tobey EA, Geers AE, Brenner C, Altuna D, Gabbert G (2003) Factors associated with development of speech production skills in children implanted by age five. Ear Hear 24:36S–45S

    Article  PubMed  Google Scholar 

  • Trehub SE, Schneider BA, Thorpe LA, Judge P (1991) Observational measures of auditory-sensitivity in early infancy. Dev Psychol 27:40–49

    Article  Google Scholar 

  • Turner CW, Gantz BJ, Vidal C, Behrens A, Henry BA (2004) Speech recognition in noise for cochlear implant listeners: benefits of residual acoustic hearing. J Acoust Soc Am 115:1729–1735

    Article  PubMed  Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based upon modulation thresholds. J Acoust Soc Am 66:1364–1380

    Article  CAS  PubMed  Google Scholar 

  • Waltzman SB, Scalchunes V, Cohen NL (2000) Performance of multiply handicapped children using cochlear implants. Am J Otol 21:329–335

    Article  CAS  PubMed  Google Scholar 

  • Werner LA, Gillenwater JM (1990) Pure-tone sensitivity of 2-week-old to 5-week-old infants. Infant Behav Dev 13:355–375

    Article  Google Scholar 

  • Werner LA, Marean GC, Halpin CF, Spetner NB, Gillenwater JM (1992) Infant auditory temporal acuity: gap detection. Child Dev 63:260–272

    Article  CAS  PubMed  Google Scholar 

  • Wightman F, Allen P, Dolan T, Kistler D, Jamieson D (1989) Temporal resolution in children. Child Dev 60:611–624

    Article  CAS  PubMed  Google Scholar 

  • Wilmington D, Gray L, Jahrsdoerfer R (1994) Binaural processing after corrected congenital unilateral conductive hearing loss. Hear Res 74:99–114

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak M, Viemeister NF (1999) Intensity discrimination and detection of amplitude modulation. J Acoust Soc Am 106:1917–1924

    Article  CAS  PubMed  Google Scholar 

  • Won JH, Drennan WR, Rubinstein JT (2007) Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. J Assoc Res Otolaryngol: JARO 8:384–392

    Article  PubMed Central  PubMed  Google Scholar 

  • Won JH, Drennan WR, Kang RS, Rubinstein JT (2010) Psychoacoustic abilities associated with music perception in cochlear implant users. Ear Hear 31:796–805

    Article  PubMed Central  PubMed  Google Scholar 

  • Won JH, Drennan WR, Nie K, Jameyson EM, Rubinstein JT (2011) Acoustic temporal modulation detection and speech perception in cochlear implant listeners. J Acoust Soc Am 130:376–388

    Article  PubMed Central  PubMed  Google Scholar 

  • Yehudai N, Tzach N, Shpak T, Most T, Luntz M (2011) Demographic factors influencing educational placement of the hearing-impaired child with a cochlear implant. Otol Neurotol 32:943–947

    Article  PubMed  Google Scholar 

  • Yoshinaga-Itano C, Baca RL, Sedey AL (2010) Describing the trajectory of language development in the presence of severe-to-profound hearing loss: a closer look at children with cochlear implants versus hearing aids. Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 31:1268–1274

  • Zeng FG, Rebscher S, Harrison W, Sun X, Feng H (2008) Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 1:115–142

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the dedicated efforts of our subjects. This study was supported by NIH grants R01-DC007525 (JTR), P30-DC04661, F31-DC009755 (JHW), K23DC013055 (DLH), and an AOS Clinician-Scientist Award (DLH) and an educational fellowship from Advanced Bionics Corporation. We thank Dr. Sohee Oh for statistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Ho Won.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MH., Won, J.H., Horn, D.L. et al. Acoustic Temporal Modulation Detection in Normal-Hearing and Cochlear Implanted Listeners: Effects of Hearing Mechanism and Development. JARO 16, 389–399 (2015). https://doi.org/10.1007/s10162-014-0499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0499-z

Keywords

Navigation