Skip to main content

Advertisement

Log in

Angiotensin II and post-streptococcal glomerulonephritis

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Post-streptococcal glomerulonephritis (PSGN) is a consequence of the infection by group A beta-hemolytic streptococcus. During this infection, various immunological processes generated by streptococcal antigens are triggered, such as the induction of antibodies and immune complexes. This activation of the immune system involves both innate and acquired immunity. The immunological events that occur at the renal level lead to kidney damage with chronic renal failure as well as resolution of the pathological process (in most cases).

Summary

Angiotensin II (Ang II) is a molecule with vasopressor and pro-inflammatory capacities, being an important factor in various inflammatory processes. During PSGN some events are defined that make Ang II conceivable as a molecule involved in the inflammatory processes during the disease.

Conclusion

This review is focused on defining which reported events would be related to the presence of this hormone in PSGN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holm SE, Norrby A, Bergholm AM, Norgren M. Aspects of pathogenesis of serious groups A streptococcal infections in Sweden, 1988–1989. J Infect Dis. 1992;166(1):1–7. https://doi.org/10.1093/infdis/166.1.31.

    Article  Google Scholar 

  2. Rodriguez-Iturbe B, Batsford S. Pathogenesis of poststreptococcal glomerulonephritis a century after Clemens von Pirquet. Kidney Int. 2007;71(11):1094–104. https://doi.org/10.1038/sj.ki.5002169.

    Article  CAS  PubMed  Google Scholar 

  3. Mosquera J, Pedreañez A. Acute post-streptococcal glomerulonephritis: analysis of the pathogenesis. Intern Rev Immunol. 2021;40(6):381–400. https://doi.org/10.1080/08830185.2020.1830083.

    Article  CAS  Google Scholar 

  4. Vogt A, Batsford S, Rodriguez-Iturbe B, García R. Cationic antigens in poststreptococcal glomerulonephritis. Clin Nephrol. 1983;20(6):271–9.

    CAS  PubMed  Google Scholar 

  5. Yoshizawa N, Yamakami K, Fujino M, Oda T, Tamura K, Matsumoto K, et al. Nephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: characterization of the antigen and associated immune response. J Am Soc Nephrol. 2004;15(7):1785–93. https://doi.org/10.1097/01.asn.0000130624.94920.6b.

    Article  CAS  PubMed  Google Scholar 

  6. Cu GA, Mezzano S, Bannan JD, Zabriskie JB. Immunohistochemical and serological evidence for the role of streptococcal proteinase in acute poststreptococcal glomerulonephritis. Kidney Int. 1998;54(3):819–26. https://doi.org/10.1046/j.1523-1755.1998.00052.x.

    Article  CAS  PubMed  Google Scholar 

  7. Vogt A, Mertz A, Batsford S. Cationic extracellular streptococcal antigen; affinity for the renal glomerulus. In: Kimura Y, Kotami S, Shiokawa Y, editors. Recent Advances in Streptococci and Streptococcal Diseases. Windsor: Reedbooks Ltd; 1985. p. 170.

    Google Scholar 

  8. Yamakami K, Yoshizawa N, Wakabayashi K, Takeuchi A, Tadakuma T, Boyle MD. The potential role for nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Methods. 2000;21(2):185–97. https://doi.org/10.1006/meth.2000.0990.

    Article  CAS  PubMed  Google Scholar 

  9. Rüster C, Wolf G. The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin Nephrol. 2013;33(1):44–53. https://doi.org/10.1016/j.semnephrol.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  10. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17(11):2985–91. https://doi.org/10.1681/ASN.2006040356.

    Article  CAS  PubMed  Google Scholar 

  11. Torres RSLA, Santos TZ, Bernardes AFL, Soares PA, Soares ACC, Dias RS. Outbreak glomerulonephritis caused by streptococcus zooepidemicus SzPHV5 type in Monte Santo de Minas, Minas Gerais, Brazil. J Clin Microbiol. 2018;56(10): e0084518. https://doi.org/10.1128/JCM.00845-18.

    Article  Google Scholar 

  12. Zabriskie JB, Utermohlen V, Read SE, Fischetti VA. Streptococcus-related glomerulonephritis. Kidney Int. 1973;3(2):100–4. https://doi.org/10.1038/ki.1973.16.

    Article  CAS  PubMed  Google Scholar 

  13. Rodriguez-Iturbe B, Carr RI, Garcia R, Rabideau D, Rubio L, McIntosh RM. Circulating immune complexes and serum immunoglobulins in acute poststreptococcal glomerulonephritis. Clin Nephrol. 1980;13(1):1–4.

    CAS  PubMed  Google Scholar 

  14. Mosquera J, Romero M, Viera N, Rincon J, Pedreáñez A. Could Streptococcal Erythrogenic toxin B induce inflammation prior to the development of immune complex deposits in poststreptococcal glomerulonephritis? Nephron Exp Nephrol. 2007;105(2):e41–4. https://doi.org/10.1159/000097602.

    Article  CAS  PubMed  Google Scholar 

  15. McIntosh RM, Kaufman DB, McIntosh JR, Griswold W. Glomerular lesions produced by autologous serum and autologous IgG modified by treatment with a culture of A -haemolytic streptooccus. J Med Microbiol. 1972;5(1):1–7. https://doi.org/10.1099/00222615-5-1-1.

    Article  CAS  PubMed  Google Scholar 

  16. Mosquera J, Rodriguez-Iturbe B. Extracellular neuraminidase production of streptococci associated with acute nephritis. Clin Nephrol. 1984;21(1):21–8.

    CAS  PubMed  Google Scholar 

  17. Mosquera JA, Katiyar VN, Coello J, Rodríguez-Iturbe B. Neuraminidase production by streptococci from patients with glomerulonephritis. J Infect Dis. 1985;151(2):259–63. https://doi.org/10.1093/infdis/151.2.259.

    Article  CAS  PubMed  Google Scholar 

  18. Mosquera J, Rodriguez-Iturbe B. Glomerular binding sites for peanut agglutinin in acute post-streptococcal glomerulonephritis. Clin Nephrol. 1986;26(5):227–34.

    CAS  PubMed  Google Scholar 

  19. Nordstrand A, Norgren M, Holm SE. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. Scand J Infect Dis. 1999;31(6):523–37. https://doi.org/10.1080/00365549950164382.

    Article  CAS  PubMed  Google Scholar 

  20. Cronin W, Deol H, Azadegan A. Endostreptosin: isolation of the probable immunogen of acute poststreptococcal glomerulonephritis (PSGN). Clin Exp Immunol. 1989;76(2):198–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, et al. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev. 2014;27(2):264–301. https://doi.org/10.1128/CMR.00101-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodriguez-Iturbe B, Haas M. Post-Streptococcal Glomerulonephritis. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic Biology to Clinical Manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016-. https://www.ncbi.nlm.nih.gov/books/2016 Feb 10.

  23. Sorger K. Postinfectious glomerulonephritis: subtypes, clinicopathological correlations, and follow-up studies. Veroff Pathol. 1986;125:1–105.

    CAS  PubMed  Google Scholar 

  24. Yang R, Otten MA, Hellmark T, Collin M, Björck L, Zhao M-H, et al. Successful treatment of experimental glomerulonephritis with IdeS and EndoS IgG-degrading streptococcal enzymes. Nephrol Dial Transplant. 2010;25(8):2479–86. https://doi.org/10.1093/ndt/gfq115.

    Article  CAS  PubMed  Google Scholar 

  25. Couser WG, Johnson RJ. Postinfectious glomerulonephritis. In: Couser WG, editor. Immunologic Renal Diseases. Philadelphia: Lippincott-Raven; 1997. p. 915–43.

    Google Scholar 

  26. Bomback AS, Markowitz GS, Appel GB. Complement-mediated glomerular diseases: tale of 3 pathways. Kidney Int Rep. 2016;1(3):148–55. https://doi.org/10.1016/j.ekir.2016.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wegmuller E, Frey B, Hodler J. Activation of the complement system in different forms of glomerulonephritis. Schweiz Med Wochenschr. 1977;107(29):1028–34.

    CAS  PubMed  Google Scholar 

  28. Wyatt RJ, Forristal J, West CD, Sugimoto S, Curd JG. Complement profiles in acute post-streptococcal glomerulonephritis. Pediatr Nephrol. 1988;2(2):219–23. https://doi.org/10.1007/BF00862594.

    Article  CAS  PubMed  Google Scholar 

  29. Berge A, Kihlberg BM, Sj€oholm AG, Björck L. Streptococcal protein H forms soluble complement-activating complexes with IgG, but inhibits complement activation by IgG-coated targets. J Biol Chem. 1997; 272(33): 20774–81. https://doi.org/10.1074/jbc.272.33.20774.

  30. Balasubramanian R, Marks SD. Post-infectious glomerulonephritis. Paediatr Int Child Health. 2017;37(4):240–7. https://doi.org/10.1080/20469047.2017.1369642.

    Article  PubMed  Google Scholar 

  31. Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996;17(11):532–40. https://doi.org/10.1016/S0167-5699(96)80908-X.

    Article  CAS  PubMed  Google Scholar 

  32. Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature. 1997;386(6624):506–10. https://doi.org/10.1038/386506a0.

    Article  CAS  PubMed  Google Scholar 

  33. Hisano S, Matsushita M, Fujita T, Takeshita M, Iwasaki H. Activation of the lectin complement pathway in post-streptococcal acute glomerulonephritis. Pathol Int. 2007;57(6):351–7. https://doi.org/10.1111/j.1440-1827.2007.02107.x.

    Article  CAS  PubMed  Google Scholar 

  34. Kouser L, Abdul-Aziz M, Nayak A, Stover CM, Sim RB, Kishore U. Properdin and factor H: opposing players on the alternative complement pathway “see-saw.” Front Immunol. 2013;4:93. https://doi.org/10.3389/fimmu.2013.00093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Westberg NG, Naff GB, Boyer JT, Michael AF. Glomerular deposition of properdin in acute and chronic glomerulonephritis with hypocomplementemia. J Clin Invest. 1971;50(3):642–9. https://doi.org/10.1172/JCI106534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. https://doi.org/10.1038/ni.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi G, Schultz MJ, Levi M, van der Poll T. The relationship between inflammation and the coagulation system. Swiss Med Wkly. 2006;136(9–10):139–44. https://doi.org/10.4414/smw.2006.11059.

    Article  PubMed  Google Scholar 

  38. Davis AE III. Biological effects of C1 inhibitor. Drug News Perspect. 2004;17(7):439–46. https://doi.org/10.1358/dnp.2004.17.7.863703.

    Article  CAS  PubMed  Google Scholar 

  39. Movchan EA, Tov NL, Loskutova SA, Chuprova AV. Role of the hemostatic system in the progression of acute glomerulonephritis. Ter Arkh. 2001;73(6):40–3.

    CAS  PubMed  Google Scholar 

  40. Adhikari M, Coovadia HM, Greig HB, Christensen S. Factor VIII procoagulant activity in children with nephrotic syndrome and post-streptococcal glomerulonephritis. Nephron. 1978;22(4–6):301–5. https://doi.org/10.1159/000181466.

    Article  CAS  PubMed  Google Scholar 

  41. Camussi G, Bosio D, Segoloni G, Tetta C, Vercellone A. Evidence for the involvement of the IgE-basophil-mastocyte system in human acute post-streptococcal glomerulonephritis. Ric Clin Lab. 1978;8(1–2):56–64.

    CAS  PubMed  Google Scholar 

  42. Maggiore Q, Jovanovic B, Baldini G. Plasma fibrinolytic hyperactivity in children with acute poststreptococcal glomerulonephritis. Nephron. 1969;6(2):81–90. https://doi.org/10.1159/000179716.

    Article  CAS  PubMed  Google Scholar 

  43. Oda T, Yamakami K, Omasu F, Suzuki S, Miura S, Sugisaki T, et al. Glomerular Plasmin-Like Activity in Relation to nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. J Am Soc Nephrol. 2005;16(1):247–54. https://doi.org/10.1681/ASN.2004040341.

    Article  CAS  PubMed  Google Scholar 

  44. Dawson KP. Urinary fibrin degradation products in childhood acute nephritis. N Z Med J. 1977;86(597):332–4.

    CAS  PubMed  Google Scholar 

  45. Foley JH, Walton BL, Aleman MM, O’Byrne AM, Lei V, Harrasser M, et al. Complement activation in arterial and venous thrombosis is mediated by plasmin. EBioMedicine. 2016;5:175–82. https://doi.org/10.1016/j.ebiom.2016.02.011.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Parra G, Platt JL, Falk RJ, Rodriguez-Iturbe B, Michael AF. Cell populations and membrane attack complex in glomeruli of patients with post-streptococcal glomerulonephritis: identification using monoclonal antibodies by indirect immunofluorescence. Clin Immunol Immunopathol. 1984;33(3):324–32. https://doi.org/10.1016/0090-1229(84)90303-9.

    Article  CAS  PubMed  Google Scholar 

  47. Parra G, Romero M, Henriquez-La Roche C, Pineda R, Rodríguez-Iturbe B. Expression of adhesion molecules in poststreptococcal glomerulonephritis. Nephrol Dial Transplant. 1994;9(10):1412–7.

    CAS  PubMed  Google Scholar 

  48. Krebs CF, Steinmetz OM. CD4þ T cell fate in glomerulonephritis: a tale of Th1, Th17, and novel treg subtypes. Mediators Inflamm. 2016;2016:5393894. https://doi.org/10.1155/2016/5393894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cormican S, Griffin MD. The complex role of interleukin6 in regulating T-cell responses during acute glomerulonephritis. J Am Soc Nephrol. 2019;30(8):1341–4. https://doi.org/10.1681/ASN.2019050453.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Panzer U, Kurts C. T cell cross-talk with kidney dendritic cells in glomerulonephritis. J Mol Med. 2010;88(1):19–26. https://doi.org/10.1007/s00109-009-0541-5.

    Article  CAS  PubMed  Google Scholar 

  51. Yang C, Huang XR, Fung E, Liu H-F, Lan H-Y. The regulatory T cell transcription factor Foxp3 protects against crescentic glomerulonephritis. Sci Rep. 2017;7(1):1481. https://doi.org/10.1038/s41598-017-01515-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mezzano S, Burgos ME, Olavarrıa F, Caorsi I. Immunohistochemical localization of IL-8 and TGFbeta in streptococcal glomerulonephritis. J Am Soc Nephrol. 1997;8(2):234–41. https://doi.org/10.1681/ASN.V82234.

    Article  CAS  PubMed  Google Scholar 

  53. Mandache E, Penescu MN. The association of polymorphonuclears with humps in acute postinfectious glomerulonephritis. Rom J Morphol Embryol. 2012;53(3):629–33.

    CAS  PubMed  Google Scholar 

  54. Oda T, Yoshizawa N, Yamakami K, Tamura K, Kuroki A, Sugisaki T, et al. Localization of nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis. Hum Pathol. 2010;41(9):1276–85. https://doi.org/10.1016/j.humpath.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  55. Reid HF, Read SE, Zabriskie JB, Ramkissoon R, Poon-King T. Suppression of cellular reactivity to group A streptococcal antigens in patients with acute poststreptococcal glomerulonephritis. J Infect Dis. 1984;149(6):841–50. https://doi.org/10.1093/infdis/149.6.84.

    Article  CAS  PubMed  Google Scholar 

  56. Wu SH, Liao PY, Yin PL, Zhang Y-M, Dong L. Elevated expressions of 15-lipoxygenase and lipoxin A4 in children with acute poststreptococcal glomerulonephritis. Am J Pathol. 2009;174(1):115–22. https://doi.org/10.2353/ajpath.2009.080671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Matsumoto K. Cytokine secretion by peripheral blood monocytes from patients with acute poststreptococcal glomerulonephritis. Int Urol Nephrol. 1994;26(5):573–7. https://doi.org/10.1007/BF02767662.

    Article  CAS  PubMed  Google Scholar 

  58. Mosquera JA, Rodriguez-Iturbe B, Vogt A, Batsford S. Lymphocitic stimulation with cationic antigens produced by streptococci isolated from patients with nephritis. In: Kimura Y, Kotami S, Shiokawa Y, editors. Recent Advances on Streptococci and Streptococcal Diseases. Berkshire: Redbooks Ltd; 1984. p. 171–2.

    Google Scholar 

  59. Mosquera JA, Rodriguez-Iturbe B, Vogt A, Batsford S. Cationic antigens produced by streptococci isolated from patients with nephritis. In: Kimura Y, Kotami S, Shiokawa Y, editors. Recent Advances in Streptococci and Streptococcal Diseases. Berkshire: Reedbooks Ltd; 1985. p. 171.

    Google Scholar 

  60. Viera NT, Romero MJ, Montero MK, Rincon J, Mosquera JA. Streptococcal erythrogenic toxin B induces apoptosis and proliferation in human leukocytes. Kidney Int. 2001;59(3):950–8. https://doi.org/10.1046/j.1523-1755.2001.059003950.x.

    Article  CAS  PubMed  Google Scholar 

  61. Viera N, Pedreañez A, Rincon J, Mosquera J. Streptococcal exotoxin B increases interleukin-6, tumor necrosis factor alpha, interleukin-8 and transforming growth factor beta-1 in leukocytes. Pediatr Nephrol. 2007;22(9):1273–81. https://doi.org/10.1007/s00467-007-0501-7.

    Article  PubMed  Google Scholar 

  62. Viera N, Pedreañez A, Rincon J, Mosquera J. Streptococcal zymogen type B induces angiotensin II in mesangial cells and leukocytes. Pediatr Nephrol. 2009;24(5):1005–11. https://doi.org/10.1007/s00467-008-1105-6.

    Article  PubMed  Google Scholar 

  63. Batsford SR, Mezzano S, Mihatsch M, Schiltz E, Rodríguez-Iturbe B. Is the nephritogenic antigen in poststreptococcal glomerulonephritis pyrogenic exotoxin B (SPE B) or GAPDH? Kidney Int. 2005;68(3):1120–9. https://doi.org/10.1111/j.1523-1755.2005.00504.x.

    Article  CAS  PubMed  Google Scholar 

  64. Gerlach D, Knoll H, Kohler W, Ozegowski H, Hríbalova V. Isolation and characterization of erythrogenic toxins. V. Communication: Identity of erythrogenic toxin type B and streptococcal proteinase precursor. Zbl Bakt Hyg I Abt Orig A. 1983;255(2–3):221–33. https://doi.org/10.1016/S0174-3031(83)80161-9.

    Article  CAS  Google Scholar 

  65. Vogt A, Schmiedeke T, Stockl F, Sugisaki Y, Mertz A, Batsford S. The role of cationic proteins in the pathogenesis of immune complex glomerulonephritis. Nephrol Dial Transplant. 1990;5(suppl 1):6–9. https://doi.org/10.1093/ndt/5.suppl_1.6.

    Article  PubMed  Google Scholar 

  66. Rodriguez-Iturbe B, Musser JM. The current state of poststreptococcal glomerulonephritis. J Am Soc Nephrol. 2008;19(10):1855–64. https://doi.org/10.1681/ASN.2008010092.

    Article  PubMed  Google Scholar 

  67. Parra G, Rodriguez-Iturbe B, Batsford S, Vogt A, Mezzano S, Olavarría F, et al. Antibody to streptococcal zymogen in the serum of patients with acute glomerulonephritis: a multicentric study. Kidney Int. 1998;54(2):509–17. https://doi.org/10.1046/j.1523-1755.1998.00012.x.

    Article  CAS  PubMed  Google Scholar 

  68. Poon-King R, Bannan J, Viteri A, Cu G, Zabriskie JB. Identification of an extracellular plasmin binding protein from nephritogenic streptococci. J Exp Med. 1993;178(2):759–63. https://doi.org/10.1084/jem.178.2.759.

    Article  CAS  PubMed  Google Scholar 

  69. Vassalli JD, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991;88(4):1067–72. https://doi.org/10.1172/JCI115405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montrucchio G, Lupia E, De Martino A, Silvestro L, Savu SR, Cacace G, et al. Plasmin promotes an endothelium-dependent adhesion of neutrophils. Involvement of platelet activating factor and P-selectin. Circulation. 1996;93(12):2152–60. https://doi.org/10.1161/01.cir.93.12.2152.

    Article  CAS  PubMed  Google Scholar 

  71. Burysek L, Syrovets T, Simmet T. The serine protease plasmin triggers expression of MCP-1 and CD40 in human primary monocytes via activation of p38 MAPK and Janus kinase (JAK)/STAT signaling pathways. J Biol Chem. 2002;277(36):33509–17. https://doi.org/10.1074/jbc.M201941200.

    Article  CAS  PubMed  Google Scholar 

  72. Pedreañez A, Viera N, Rincon J, Mosquera J. Increased IL-6 in supernatant of rat mesangial cell cultures treated with erythrogenic toxin type B and its precursor isolated from nephritogenic streptococci. Am J Nephrol. 2006;26(1):75–81. https://doi.org/10.1159/000091955.

    Article  CAS  PubMed  Google Scholar 

  73. Rincon J, Viera NT, Romero MJ, Mosquera J. Increased production of chemotactic cytokines and elevated proliferation and expression of intercellular adhesion molecule-1 in rat mesangial cells treated with erythrogenic toxin type B and its precursor isolated from nephritogenic streptococci. Nephrol Dial Transplant. 2003;18(6):10728. https://doi.org/10.1093/ndt/gfg109.

    Article  CAS  Google Scholar 

  74. Oda T, Yoshizawa N, Yamakami K, Sakurai Y, Takechi H, Yamamoto K, et al. The role of nephritis-associated plasmin receptor (NAPlr) in glomerulonephritis associated with streptococcal infection. J Biomed Biotechnol. 2012;2012:417675. https://doi.org/10.1155/2012/417675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lottenberg R, Broder CC, Boyle MD. Identification of a specific receptor for plasmin on a group A streptococcus. Infect Immun. 1987;55(8):1914–8. https://doi.org/10.1128/IAI.55.8.1914-1918.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khan F, Yamakami K, Mahmood J, Li B, Kikuchi T, Kumagai N, et al. Alterations of cell adhesion molecules in human glomerular endothelial cells in response to nephritis-associated plasminogen receptor. Nephron Exp Nephrol. 2007;105(2):e53–64. https://doi.org/10.1159/000097840.

    Article  CAS  PubMed  Google Scholar 

  77. McIntosh RM, Kaufman DB, Kulvinskas C. Alteration of the chemical composition of human immunoglobulin G by Streptococcus pyogenes. J Med Microbiol. 1971;4(4):535–8. https://doi.org/10.1099/00222615-4-4-535.

    Article  CAS  PubMed  Google Scholar 

  78. Griswold WR, McIntosh JR, Weil R 3rd, McIntosh RM. Neuraminidase treated homologous IgG and immune deposit renal disease in inbred rats. Pro Soc Exp Biol Med. 1975;58(4):382–7. https://doi.org/10.3181/00379727-148-38680.

    Article  Google Scholar 

  79. McIntosh R, Rabideau D, Allen JE, Rubio L, Carr RI, Rodriguez-Iturbe B. Acute poststreptococcal glomerulonephritis in Maracaibo. II: Studies on the incidence, nature, and significance of circulating anti-immunoglobulins. Ann Rheum Dis. 1979;38(3):257–61. https://doi.org/10.1136/ard.38.3.257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. McIntosh RM, Garcıa R, Rubio L, Rabideau D, Allen JE, Carr RI, et al. Evidence of an autologous immune complex pathogenic mechanism in acute poststreptococcal glomerulonephritis. Kidney Int. 1978;14(5):501–10. https://doi.org/10.1038/ki.1978.155.

    Article  CAS  PubMed  Google Scholar 

  81. Rodriguez-Iturbe B, Katiyar VN, Coello J. Neuraminidase activity and free sialic acid levels in the serum of patients with acute poststreptococcal glomerulonephritis. N Engl J Med. 1981;304(25):1506–10. https://doi.org/10.1056/NEJM198106183042502.

    Article  CAS  PubMed  Google Scholar 

  82. Marin C, Mosquera J, Rodriguez-Iturbe B. Histological evidence of neuraminidase involvement in acute nephritis: desialised leukocytes infiltrate the kidney in acute poststreptococcal glomerulonephritis. Clin Nephrol. 1997;47(4):217–21.

    CAS  PubMed  Google Scholar 

  83. Marin C, Mosquera J, Rodriguez-Iturbe B. Neuraminidase promotes neutrophil, lymphocyte and macrophage infiltration in the normal rat kidney. Kidney Int. 1995;47(1):88–95. https://doi.org/10.1038/ki.1995.10.

    Article  CAS  PubMed  Google Scholar 

  84. Burova LA, Nagornev VA, Pigarevsky PV, Gladilina MM, Seliverstova VG, Schalen C, et al. Triggering of renal tissue damage in the rabbit by IgG Fc-receptor-positive group A streptococci. APMIS. 1998;106(1–6):277–87. https://doi.org/10.1111/j.1699-0463.1998.tb01347.x.

    Article  CAS  PubMed  Google Scholar 

  85. Schroder AK, Gharavi AE, Christensen P. Molecular interactions between human IgG, IgM rheumatoid factor and streptococcal IgG Fc receptors. Int Arch Allergy Appl Immunol. 1988;86(1):92–6. https://doi.org/10.1159/000234611.

    Article  CAS  PubMed  Google Scholar 

  86. Collin M, Olsen A. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. Embo J. 2001;20(12):3046–55. https://doi.org/10.1093/emboj/20.12.3046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nandakumar KS, Johansson BP, Bj€orck L, Holmdahl R. Blocking of experimental arthritis by cleavage of IgG antibodies in vivo. Arthritis Rheum. 2007;56(10): 3253–60. https://doi.org/10.1002/art.22930.

  88. Kozyro I, Perahud I, Sadallah S, Sukalo A, Titov L, Schifferli J. DNA-anti-DNA complexes in post-streptococcal glomerulonephritis. Clin Nephrol. 1984;22(2):97–101.

    Google Scholar 

  89. Ardiles LG, Valderrama G, Moya P, Mezzano SA. Incidence and studies on antigenic specificities of antineutrophil-cytoplasmic autoantibodies (ANCA) in poststreptococcal glomerulonephritis. Clin Nephrol. 1997;47(1):1–5.

    CAS  PubMed  Google Scholar 

  90. Gong YL, Li YF. Anticardiolipin antibodies in concurrent poststreptococcal glomerulonephritis and autoimmune hemolytic anemia: a case report. Arch Argent Pediatr. 2018;116(2):e288–91. https://doi.org/10.5546/aap.2018.eng.e288.

    Article  PubMed  Google Scholar 

  91. Chauvet S, n Berthaud R, Devriese M, Mignotet M, Vieira Martins P, Robe-Rybkine T, et al. Anti-Factor B Antibodies and Acute Postinfectious GN in Children. J Am Soc Nephrol. 2020;31(4):829–40. https://doi.org/10.1681/ASN.2019080851.

  92. Luo YH, Chuang WJ, Wu JJ, Lin MT, Liu C-C, Lin P-Y, et al. Molecular mimicry between streptococcal pyrogenic exotoxin B and endothelial cells. Lab Invest. 2010;90(10):1492–506. https://doi.org/10.1038/labinvest.2010.93.

    Article  CAS  PubMed  Google Scholar 

  93. Kefalides NA, Pegg NT, Ohno N, Poon-King T, Zabriskie J, Fillit H. Antibodies to basement membrane collagen and to laminin are present in sera from patients with poststreptococcal glomerulonephritis. J Exp Med. 1986;163(3):588–602. https://doi.org/10.1084/jem.163.3.588.

    Article  CAS  PubMed  Google Scholar 

  94. Goroncy-Bermes P, Dale JB, Beachey EH, Opferkuch W. Monoclonal antibody to human renal glomeruli cross-reacts with streptococcal M protein. Infect Immun. 1987;55(10):2416–9. https://doi.org/10.1128/IAI.55.10.2416-2419.1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lindberg LH, Vosti KL. Elution of glomerular bound antibodies in experimental streptococcal glomerulonephritis. Science. 1969;166(3908):1032–3. https://doi.org/10.1126/science.166.3908.1032.

    Article  CAS  PubMed  Google Scholar 

  96. Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2007;21(1):20–7. https://doi.org/10.1038/sj.jhh.1002101.

    Article  CAS  PubMed  Google Scholar 

  97. Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev. 1993;45(2):205–51.

    CAS  PubMed  Google Scholar 

  98. Ferrario CM, Chappell MC. Novel angiotensin peptides. Cell Mol Life Sci. 2004;61(21):2720–7. https://doi.org/10.1007/s00018-004-4243-4.

    Article  CAS  PubMed  Google Scholar 

  99. Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I, Scanga SE, et al. Angiotensin converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–8. https://doi.org/10.1038/nature00786.

    Article  CAS  PubMed  Google Scholar 

  100. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res. 2006;98(4):463–71. https://doi.org/10.1161/01.RES.0000205761.22353.5f.

    Article  CAS  PubMed  Google Scholar 

  101. Huang XR, Chen WY, Truong LD, Lan HY. Chymase is upregulated in diabetic nephropathy: implications for an alternative pathway of angiotensin II-mediated diabetic renal and vascular disease. J Am Soc Nephrol. 2003;14(7):1738–47. https://doi.org/10.1097/01.asn.0000071512.93927.4e.

    Article  CAS  PubMed  Google Scholar 

  102. Bacani C, Frishman WH. Chymase: a new pharmacologic target in cardiovascular disease. Cardiol Rev. 2006;14(4):187–93. https://doi.org/10.1097/01.crd.0000195220.62533.c5.

    Article  PubMed  Google Scholar 

  103. Reaux A, Fournie-Zaluski MC, Llorens-Cortes C. Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab. 2001;12(4):157–62. https://doi.org/10.1016/s1043-2760(01)00381-2.

    Article  CAS  PubMed  Google Scholar 

  104. Cesari M, Rossi GP, Pessina AC. Biological properties of the angiotensin peptides other than angiotensin II: implications for hypertension and cardiovascular diseases. J Hypertens. 2002;20(5):793–9. https://doi.org/10.1097/00004872-200205000-00002.

    Article  CAS  PubMed  Google Scholar 

  105. Hamilton TA, Handa RK, Harding JW, Wright JW. A role for angiotensin IV/AT4 system in mediating natiuresis in the rat. Peptides. 2001;22(6):935–44. https://doi.org/10.1016/s0196-9781(01)00405-3.

    Article  CAS  PubMed  Google Scholar 

  106. Kramar EA, Harding JW, Wright JW. Angiotensin II- and IV-induced changes in cerebral blood flow. Roles of AT1 and AT2, and AT4 receptor subtypes. Regul Pept. 1997;68(2):131–8. https://doi.org/10.1016/s0167-0115(96)02116-7.

    Article  CAS  PubMed  Google Scholar 

  107. Van Kats JP, Danser AH, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MA. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusion. Circulation. 1998;98(1):73–81. https://doi.org/10.1161/01.cir.98.1.73.

    Article  PubMed  Google Scholar 

  108. Kobori H, Pieto-Carrasquero MC, Ozawa Y, Navar LG. AT1 receptor mediated augmentation of intrarenal angiotensinogen in angiotensin II dependent hypertension. Hypertension. 2004;43(5):1126–32. https://doi.org/10.1161/01.HYP.0000122875.91100.28.

    Article  CAS  PubMed  Google Scholar 

  109. Moulik S, Speth RC, Turner BB, Rowe BP. Angiotensin II receptor subtype distribution in the rabbit brain. Exp Brain Res. 2002;142(2):275–83. https://doi.org/10.1007/s00221-001-0940-5.

    Article  CAS  PubMed  Google Scholar 

  110. Ghiani BU, Masini MA. Angiotensin II bindings sites in the rat pancreas and their modulation after sodium loading and depletion. Comp Biochem Physiol A Physiol. 1995;111(3):439–44. https://doi.org/10.1016/0300-9629(95)00030-b.

    Article  CAS  PubMed  Google Scholar 

  111. Karlsson C, Lindell K, Ottosson M, Sjöström L, Carlsson B, Carlsson LM. Human adipose tissue expresses angiotensinogen and enzymes required for its conversion to angiotensin II. J Clin Endocrinol Metabol. 1998;83(11):3925–9. https://doi.org/10.1210/jcem.83.11.5276.

    Article  CAS  Google Scholar 

  112. de Mello W. Effect of extracellular and intracellular angiotensin on heart cell function; on the cardiac renin-angiotensin system. Regul Pept. 2003;114(2–3):87–90. https://doi.org/10.1016/s0167-0115(03)00121-6.

    Article  PubMed  Google Scholar 

  113. Re RN, Cook JL. The intracrine hypothesis: an update. Regul Pept. 2006;133(1–3):1–9. https://doi.org/10.1016/j.regpep.2005.09.012.

    Article  CAS  PubMed  Google Scholar 

  114. Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20(5):953–70. https://doi.org/10.1210/me.2004-0536.

    Article  CAS  PubMed  Google Scholar 

  115. Porrello ER, Delbridge LM, Thomas WG. The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front BioSci. 2009;14(3):958–72. https://doi.org/10.2741/3289.

    Article  CAS  Google Scholar 

  116. Ito N, Ohishi M, Yamamoto K, Tatara Y, Atsushi S, Norihiro H, et al. Renin-angiotensin inhibition reverses advanced cardiac remodeling in aging spontaneously hypertensive rats. Am J Hypertens. 2007;20(7):792–9. https://doi.org/10.1016/j.amjhyper.2007.02.004.

    Article  CAS  PubMed  Google Scholar 

  117. Thekkumkara TJ, Cookson R, Linas SL. Angiotensin (AT1A) receptor mediated increases in transcellular sodium transport in proximal tubule cells. Am J Physiol. 1998;274(5):F897–905. https://doi.org/10.1152/ajprenal.1998.274.5.F897.

    Article  CAS  PubMed  Google Scholar 

  118. Aguilera G. Role of angiotensin II receptor subtypes on the regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. Mol Cell Endocrinol. 1992;90(1):53–60. https://doi.org/10.1016/0303-7207(92)90101-b.

    Article  CAS  PubMed  Google Scholar 

  119. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest. 2000;106(1):103–6. https://doi.org/10.1172/JCI10022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Oliverio MI, Coffman TM. Angiotensin II receptor physiology using gene targeting. News Physiol Sci. 2000;15:171–5. https://doi.org/10.1152/physiologyonline.2000.15.4.171.

    Article  CAS  PubMed  Google Scholar 

  121. Schulman IH, Raij L. The angiotensin II type 2 receptor: what is its clinical significance? Curr Hypertens Rep. 2008;10(3):188–93. https://doi.org/10.1007/s11906-008-0036-8.

    Article  CAS  PubMed  Google Scholar 

  122. Esteban V, Lorenzo O, Ruperez M, Suzuki Y, Mezzano S, Blanco J, et al. Angiotensin II, via AT1 and AT2 receptors and NF-kB pathway, regulates the inflammatory response in unilateral ureteral obstruction. J Am Soc Nephrol. 2004;15(6):1514–29. https://doi.org/10.1097/01.asn.0000130564.75008.f5.

    Article  CAS  PubMed  Google Scholar 

  123. Ruiz-Ortega M, Esteban V, Suzuki Y, Ruperez M, Mezzano S, Ardiles L, et al. Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. Kidney Int Suppl. 2003;86:S21–6. https://doi.org/10.1046/j.1523-1755.64.s86.5.x.

    Article  CAS  Google Scholar 

  124. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev. 2000;52(3):415–72.

    PubMed  Google Scholar 

  125. Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci. 2008;29(7):367–74. https://doi.org/10.1016/j.tips.2008.05.003.

    Article  CAS  PubMed  Google Scholar 

  126. Chua CC, Hamdy RC, Chua BH. Upregulation of vascular endothelial growth factor by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta. 1998;1401(2):187–94. https://doi.org/10.1016/s0167-4889(97)00129-8.

    Article  CAS  PubMed  Google Scholar 

  127. Kitayama H, Maeshima Y, Takazawa Y, Yamamoto Y, Wu Y, Ichinose K, et al. Regulation of angiogenic factors in angiotensin II infusion model in association with tubulointerstitial injuries. Am J Hypertens. 2006;19(7):718–27. https://doi.org/10.1016/j.amjhyper.2005.09.022.

    Article  CAS  PubMed  Google Scholar 

  128. Suzuki Y, Ruiz-Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35(6):881–900. https://doi.org/10.1016/s1357-2725(02)00271-6.

    Article  CAS  PubMed  Google Scholar 

  129. Alvarez A, Cerda´-Nicola´s M, Abu N, Mata M, Issekutz AC, Panés J, et al. Direct evidence of leukocyte adhesion in arterioles by angiotensin II. Blood. 2004; 104(2): 402-8. https://doi.org/10.1182/blood-2003-08-2974.

  130. Piqueras L, Kubes P, Alvarez A, O’Connor E, Issekutz AC, Esplugues JV, et al. Angiotensin II induces leukocyte-endothelial cell interactions in vivo via AT(1) and AT(2) receptor-mediated P-selectin upregulation. Circulation. 2000;102(17):2118–23. https://doi.org/10.1161/01.cir.102.17.2118.

    Article  CAS  PubMed  Google Scholar 

  131. Pueyo ME, Gonzalez W, Nicoletti A, Savoie F, Arnal JF, Michel JB. Angiotensin stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Artherocler Thromb Vasc Biol. 2000;20(3):645–51. https://doi.org/10.1161/01.atv.20.3.645.

    Article  CAS  Google Scholar 

  132. Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, et al. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol. 2008; 295(2): F515-F 24. https://doi.org/10.1152/ajprenal.00527.2007.

  133. Jurewicz M, McDermott DH, Sechler JM, Tinckam K, Takakura A, Carpenter CB, et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II induced inflammation. J Am Soc Nephrol. 2007;18(4):1093–102. https://doi.org/10.1681/ASN.2006070707.

    Article  CAS  PubMed  Google Scholar 

  134. Kvakan H, Kleinewietfeld M, Qadri F, Park J-K, Fischer R, Schwarz I, et al. Regulatory T cells ameliorate angiotensin II-induced cardiac damage. Circulation. 2009;119(22):2904–12. https://doi.org/10.1161/CIRCULATIONAHA.108.832782.

    Article  CAS  PubMed  Google Scholar 

  135. Welch WJ. Angiotensin II-dependent superoxide: effects on hypertension and vascular dysfunction. Hypertension. 2008;52(1):51–6. https://doi.org/10.1161/HYPERTENSIONAHA.107.090472.

    Article  CAS  PubMed  Google Scholar 

  136. Wu R, Laplante MA, de Champlain J. Cyclooxygenase-2 inhibitors attenuate angiotensin II-induced oxidative stress, hypertension, and cardiac hypertrophy in rats. Hypertension. 2005;45(6):1139–44. https://doi.org/10.1161/01.HYP.0000164572.92049.29.

    Article  CAS  PubMed  Google Scholar 

  137. Wen Y, Liu Y, Tang T, Lv L, Liu H, Ma K, et al. NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget. 2016; 7(34):54290–302. https://doi.org/10.18632/oncotarget.11091.

  138. Thakur S, Li L, Gupta S. NF-κB-mediated integrin-linked kinase regulation in angiotensin II-induced pro-fibrotic process in cardiac fibroblasts. Life Sci. 2014;107(1–2):68–75. https://doi.org/10.1016/j.lfs.2014.04.030.

    Article  CAS  PubMed  Google Scholar 

  139. Weber KT, Swamynathan SK, Guntaka RV, Sun Y. Angiotensin II and Extracellular Matrix Homeostasis. J Biochem Cell Biol. 1999;31(3–4):395–403. https://doi.org/10.1016/s1357-2725(98)00125-3.

    Article  CAS  Google Scholar 

  140. Than A, Leow MK, Chen P. Control of adipogenesis by the autocrine interplays between angiotensin 1–7/Mas receptor and angiotensin II/AT1 receptor signaling pathways. J Biol Chem. 2013;288(22):15520–31. https://doi.org/10.1074/jbc.M113.459792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sharma AM, Engeli S. The role of renin-angiotensin system blockade in the management of hypertension associated with the cardiometabolic syndrome. J Cardiometab Syndr. 2006;1(1):29–35. https://doi.org/10.1111/j.0197-3118.2006.05422.x.

    Article  PubMed  Google Scholar 

  142. Chalmers L, Kaskel FJ, Bamgbola O. The role of obesity and its bioclinical correlates in the progression of chronic kidney disease. Adv Chronic Kidney Dis. 2006;13(4):352–64. https://doi.org/10.1053/j.ackd.2006.07.010.

    Article  PubMed  Google Scholar 

  143. Gao N, Wang H, Zhang X, Yang Z. The inhibitory effect of angiotensin II on BKCa channels in podocytes via oxidative stress. Mol Cell Biochem. 2015;398(1–2):217–22. https://doi.org/10.1007/s11010-014-2221-1.

    Article  CAS  PubMed  Google Scholar 

  144. Saginova EA, Fedorova EI, Fomin VV, Moiseev SV, Minakova EG, Gitel’et EP, et al. Development of renal affection in obese patients. Ter Arkh. 2006;78(5):36–41.

    CAS  PubMed  Google Scholar 

  145. Hongo M, Ishizaka N, Furuta K, Yahagi N, Saito K, Sakurai R, et al. Administration of angiotensin II, but not catecholamines, induces accumulation of lipids in the rat heart. Eur J Pharmacol. 2009;604(1–3):87–92. https://doi.org/10.1016/j.ejphar.2008.12.006.

    Article  CAS  PubMed  Google Scholar 

  146. Mayor F Jr, Cruces-Sande M, Arcones AC, Vila-Bedmar R, Briones AM, Salaices M, et al. G protein-coupled receptor kinase 2 (GRK2) as an integrative signalling node in the regulation of cardiovascular function and metabolic homeostasis. Cell Signal. 2018;41:25–32. https://doi.org/10.1016/j.cellsig.2017.04.002.

    Article  CAS  PubMed  Google Scholar 

  147. Glenn DJ, Cardema MC, Ni W, Zhang Y, Yeghiazarians Y, Grapov D, et al. Cardiac steatosis potentiates angiotensin II effects in the heart. Am J Physiol Heart Circ Physiol. 2015;308(4):H339–50. https://doi.org/10.1152/ajpheart.00742.2014.

    Article  CAS  PubMed  Google Scholar 

  148. Kintscher U, Lyon CJ, Law RE. Angiotensin II, PPAR-gamma and atherosclerosis. Front Biosci. 2004;9(1):359–69. https://doi.org/10.2741/1225.

    Article  CAS  PubMed  Google Scholar 

  149. Schuchard J, Winkler M, Stölting I, Schuster F, Vogt FM, Barkhausen J, et al. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/Mas-dependent pathway. Br J Pharmacol. 2015;172(15):3764–78. https://doi.org/10.1111/bph.13172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kochueva M, Sukhonos V, Shalimova A, Psareva V, Kirichenko N. State of integral remodeling parameters of target organs in patients with essential hypertension and obesity. Georgian Med News. 2014;231:26–30.

    Google Scholar 

  151. Frohlich ED. Clinical management of the obese hypertensive patient. Cardiol Rev. 2002;10(3):127–38. https://doi.org/10.1097/00045415-200205000-00001.

    Article  PubMed  Google Scholar 

  152. Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, et al. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation. Hypertension. 2016;67(5):970–6. https://doi.org/10.1161/HYPERTENSIONAHA.115.06736.

    Article  CAS  PubMed  Google Scholar 

  153. Deji N, Kume S, Araki S, Isshiki K, Araki H, Chin-Kanasaki M, et al. Role of angiotensin II-mediated AMPK inactivation on obesity-related salt-sensitive hypertension. Biochem Biophys Res Commun. 2012;418(3):559–64. https://doi.org/10.1016/j.bbrc.2012.01.070.

    Article  CAS  PubMed  Google Scholar 

  154. Vaidya A, Forman JP, Williams JS. Vitamin D and the vascular sensitivity to angiotensin II in obese Caucasians with hypertension. J Hum Hypertens. 2011;25(11):672–8. https://doi.org/10.1038/jhh.2010.110.

    Article  CAS  PubMed  Google Scholar 

  155. Mutch NJ, Wilson HM, Booth NA. Plasminogen Activator inhibitor-1 and Haemostasis in Obesity. Proc Nutr Soc. 2001;6(3):341–7. https://doi.org/10.1079/pns200199.

    Article  Google Scholar 

  156. Skurk T, Lee YM, Hauner H. Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipocytes in primary culture. Hypertension. 2001;37(5):1336–40. https://doi.org/10.1161/01.hyp.37.5.1336.

    Article  CAS  PubMed  Google Scholar 

  157. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2(7):247–57. https://doi.org/10.1002/emmm.201000080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mao S, Xuan X, Sha Y, Zhao S, Zhang A, Huang S, et al. Crescentic acute glomerulonephritis with isolated C3 deposition: a case report and review of literature. Int J Clin Exp Pathol. 2015;8(2):1826–9.

    PubMed  PubMed Central  Google Scholar 

  159. Hunt EAK, Somers MJG. Infection-Related Glomerulonephritis. Pediatr Clin North Am. 2019;66(1):59–72. https://doi.org/10.1016/j.pcl.2018.08.005.

    Article  PubMed  Google Scholar 

  160. Ong LT. Management and outcomes of acute post-streptococcal glomerulonephritis in children. World J Nephrol. 2022;11(5):139–45. https://doi.org/10.5527/wjn.v11.i5.139.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zaffanello M, Cataldi L, Franchini M, Fanos V. Evidence-based treatment limitations prevent any therapeutic recommendation for acute poststreptococcal glomerulonephritis in children. Med Sci Monit. 2010;16(4): RA79–84.

  162. Jankauskiene A, Cerniauskiene V, Jakutovic M, Malikenas A. Enalapril influence on blood pressure and echocardiographic parameters in children with acute postinfectious glomerulonephritis. Medicina (Kaunas). 2005;41:1019–25.

    PubMed  Google Scholar 

  163. Parra G, Rodríguez-Iturbe B, Colina-Chourio J, García R. Short-term treatment with captopril in hypertension due to acute glomerulonephritis. Clin Nephrol. 1988;29(2):58–62.

    CAS  PubMed  Google Scholar 

  164. Morsi MR, Madina EH, Anglo AA, Soliman AT. Evaluation of captopril versus reserpine and frusemide in treating hypertensive children with acute post-streptococcal glomerulonephritis. Acta Paediatr. 1992;81(2):145–9. https://doi.org/10.1111/j.1651-2227.1992.tb12191.x.

    Article  CAS  PubMed  Google Scholar 

  165. Kikuchi Y, Yoshizawa N, Oda T, Imakiire T, Suzuki S, Miura S. Streptococcal origin of a case of Henoch-Schoenlein purpura nephritis. Clin Nephrol. 2006;65(2):124–8. https://doi.org/10.5414/cnp65124.

    Article  CAS  PubMed  Google Scholar 

  166. Devasena T, Lalitha S, Padma K. Lipid peroxidation, osmotic fragility and antioxidant status in children with acute post-streptococcal glomerulonephritis. Clin Chim Acta. 2001;308(1–2):155–61. https://doi.org/10.1016/s0009-8981(01)00482-x.

    Article  CAS  PubMed  Google Scholar 

  167. DeFazio V, Christensen RC, Regan T, Baer LJ, Morita Y, Hellems HK. Circulatory changes in acute glomerulonephritis. Circulation. 1959;20(2):190–200. https://doi.org/10.1161/01.cir.20.2.190.

    Article  CAS  PubMed  Google Scholar 

  168. Warren DJ, Ferris TF. Renin secretion in renal hypertension. Lancet. 1970;1(7639):159–62. https://doi.org/10.1016/s0140-6736(70)90404-6.

    Article  CAS  PubMed  Google Scholar 

  169. Kokot F, Kuska J. Plasma renin activity in acute renal insufficiency. Nephron. 1969;6(2):115–27. https://doi.org/10.1159/000179720.

    Article  CAS  PubMed  Google Scholar 

  170. Cattran DC, Feehally J, Cook HT. Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int Supplem. 2012;2(2):139–274. https://doi.org/10.1038/kisup.2012.9.

    Article  Google Scholar 

  171. Powell HR, Rotenberg E, Williams AL, McCredie DA. Plasma renin activity in acute poststreptococcal glomerulonephritis and the haemolytic-uraemic syndrome. Arch Dis Child. 1974;49(10):802–7. https://doi.org/10.1136/adc.49.10.802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chang SY, Oh BH, Lee W, Park CM. Plasma renin activities in patients with acute poststreptococcal glomerulonephritis. J Korean Pediat Soc. 1982;25(4):329–33.

    Google Scholar 

  173. VanDeVoorde RG. Acute Poststreptococcal Glomerulonephritis: The Most Common Acute Glomerulonephritis. Pediatr Rev. 2015;36(1):3–12; quiz 13. https://doi.org/10.1542/pir.36-1-3.

  174. Rodriguez-Iturbe B, Pons H, Johnson RJ. Role of the immune system in hypertension. Physiol Rev. 2017;97(3):1127–64. https://doi.org/10.1152/physrev.00031.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sequeira-Lopez MLS, Gomez RA. Renin Cells, the Kidney, and Hypertension. Circ Res. 2021;128(7):887–907. https://doi.org/10.1161/CIRCRESAHA.121.318064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bader M, Ganten D. Update on tissue renin-angiotensin systems. J Mol Med (Berl). 2008;86(6):615–21. https://doi.org/10.1007/s00109-008-0336-0.

    Article  CAS  PubMed  Google Scholar 

  177. Dietze GJ, Henriksen EJ. Angiotensin-converting enzyme in skeletal muscle: sentinel of blood pressure control and glucose homeostasis. J Renin Angiotensin Aldosterone Syst. 2008;9(2):75–88. https://doi.org/10.3317/jraas.2008.011.

    Article  CAS  PubMed  Google Scholar 

  178. Ito S, Kuriyama H, Iino N, Iguchi S, Shimada H, Ueno M, et al. Patient with diffuse mesangial and endocapillary proliferative glomerulonephritis with hypocomplementemia and elevated anti-streptolysin O treated with prednisolone, angiotensin-converting enzyme inhibitor, and angiotensin II receptor antagonist. J Clin Exp Nephrol. 2003;7(4):290–5. https://doi.org/10.1007/s10157-003-0244-0.

    Article  Google Scholar 

  179. Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, et al. Role of renin-angiotensin system in vascular diseases. Hypertension. 2001;38(6):1382–7. https://doi.org/10.1161/hy1201.100589.

    Article  CAS  PubMed  Google Scholar 

  180. Ambari AM, Setianto B, Santoso A, Radi B, Dwiputra B, Susilowati E, et al. Angiotensin Converting Enzyme Inhibitors (ACEIs) Decrease the Progression of Cardiac Fibrosis in Rheumatic Heart Disease Through the Inhibition of IL-33/sST2. Front Cardiovasc Med. 2020;7:115. https://doi.org/10.3389/fcvm.2020.00115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, et al. From podocyte biology to novel cures for glomerular disease. Kidney Int. 2019;96(4):850–61. https://doi.org/10.1016/j.kint.2019.05.015.

    Article  PubMed  Google Scholar 

  182. Didion SP, Faraci FM. Angiotensin II produces superoxide mediated impairment of endothelial function in cerebral arterioles. Stroke. 2003;34(8):2038–42. https://doi.org/10.1161/01.STR.0000081225.46324.AA.

    Article  CAS  PubMed  Google Scholar 

  183. Erdos B, Broxson CS, King MA, Scarpace PJ, Tümer N. Acute pressor effect of central angiotensin II is mediated by NAD(P)H-oxidase-dependent production of superoxide in the hypothalamic cardiovascular regulatory nuclei. J Hypertens. 2003;34(8):2038–42. https://doi.org/10.1161/01.STR.0000081225.46324.AA.

    Article  CAS  Google Scholar 

  184. Nickenig G, Harrison DG. The AT1-type angiotensin receptor in oxidative stress and atherosclerosis, part I: oxidative stress and atherogenesis. Circulation. 2002;105(3):393–6. https://doi.org/10.1161/hc0302.102618.

    Article  CAS  PubMed  Google Scholar 

  185. Yoshizawa N, Yamada M, Fujino M, Oda T. Nephritis-Associated Plasmin Receptor (NAPlr): an essential inducer of C3-dominant glomerular injury and a potential key diagnostic biomarker of Infection-Related Glomerulonephritis (IRGN). Int J Mol Sci. 2022;23(17):9974. https://doi.org/10.3390/ijms23179974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S, et al. Posttranscriptional regulation of angiotensin II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase. Nucleic Acids Res. 2009;37(7):2346–58. https://doi.org/10.1093/nar/gkp098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Backlund M, Paukku K, Kontula KK, Lehtonen JYA. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism. Nucleic Acids Res. 2016;44(7):3095–104. https://doi.org/10.1093/nar/gkv1368.

    Article  CAS  PubMed  Google Scholar 

  188. Seweryn E, Pędyczakb A, Banaś T. Inhibition of angiotensin- converting enzyme by a synthetic peptide fragment of glyceraldehyde-3-phosphate dehydrogenase. Z Naturforsch. 2000;55:657–60.

    Article  CAS  Google Scholar 

  189. Kohama Y, Oka H, Yamamoto K, Teramoto T, Okabe M, Mimura T, et al. Induction of angiotensin-converting enzyme inhibitory activity by acid-limited proteolysis of glyceraldehyde 3-phosphate dehydrogenase. Biochem Biophy Res Commun. 1989;161(2):456–60. https://doi.org/10.1016/0006-291x(89)92620-x.

    Article  CAS  Google Scholar 

  190. Kanjanabuch T, Kittikowit W, Eiam-Ong S. An update on acute postinfectious glomerulonephritis worldwide. Nat Rev Nephrol. 2009;5(5):259–69. https://doi.org/10.1038/nrneph.2009.44.

    Article  PubMed  Google Scholar 

  191. Rawla P, Padala SA, Ludhwani D. Poststreptococcal Glomerulonephritis. Treasure Island (FL): StatPearls Publishing; 2021.

    Google Scholar 

  192. Demircioglu Kılıc B, Akbalık Kara M, Buyukcelik M, Balat A. Pediatric post-streptococcal glomerulonephritis: clinical and laboratory data. Pediatr Int. 2018;60(7):645–50. https://doi.org/10.1111/ped.13587.

    Article  CAS  PubMed  Google Scholar 

  193. Pinto SW, Sesso R, Vasconcelos E, Watanabe YJ, Pansute AM. Follow-up of patients with epidemic poststreptococcal glomerulonephritis. Am J Kidney Dis. 2001;38:249–55. https://doi.org/10.1053/ajkd.2001.26083.

    Article  CAS  PubMed  Google Scholar 

  194. Hoy WE, White AV, Dowling A, Sharma SK, Bloomfield H, Tipiloura BT, et al. Post-streptococcal glomerulonephritis is a strong risk factor for chronic kidney disease in later life. Kidney Int. 2012;81(10):1026–32. https://doi.org/10.1038/ki.2011.478.

    Article  CAS  PubMed  Google Scholar 

  195. Chou Y-H, Chu T-S, Lin S-L. Role of renin-angiotensin system in acute kidney injury-chronic kidney disease transition. Nephrology. 2018;23(Suppl 4):121–5. https://doi.org/10.1111/nep.13467.

    Article  CAS  PubMed  Google Scholar 

  196. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87. https://doi.org/10.1124/pr.59.3.3.

    Article  CAS  PubMed  Google Scholar 

  197. Nakamura T, Obata J, Kimura H, Ohno S, Yoshida Y, Kawachi H, et al. Blocking angiotensin II ameliorates proteinuria and glomerular lesions in progressive mesangioproliferative glomerulonephritis. Kidney Int. 1999;55(3):877–89. https://doi.org/10.1046/j.1523-1755.1999.055003877.x.

    Article  CAS  PubMed  Google Scholar 

  198. Luft FC. Proinflammatory effects of angiotensin II and endothelin: targets for progression of cardiovascular and renal diseases. Curr Opin Nephrol Hypertens. 2002;11(1):59–66. https://doi.org/10.1097/00041552-200201000-00009.

    Article  PubMed  Google Scholar 

  199. Kohan DE. Angiotensin II and endothelin in chronic glomerulonephritis. Kidney Int. 1998;54(2):646–7. https://doi.org/10.1046/j.1523-1755.1998.00038.x.

    Article  CAS  PubMed  Google Scholar 

  200. Agarwal R. Proinflammatory effects of oxidative stress in chronic kidney disease: role of additional angiotensin II blockade. Am J Physiol Renal Physiol. 2003;284(4):F863–9. https://doi.org/10.1152/ajprenal.00385.2002.

    Article  CAS  PubMed  Google Scholar 

  201. Gallo GR, Feiner HD, Steele JM, Schacht RG, Gluck MC, Baldwin DS, et al. Role of intrarenal vascular sclerosis in progression of poststreptococcal glomerulonephritis. Clin Nephrol. 1980;13(2):49–57.

    CAS  PubMed  Google Scholar 

  202. Yu L, Border WA, Anderson I, McCourt M, Huang Y, Noble NA. Combining TGF-beta inhibition and angiotensin II blockade results in enhanced antifibrotic effect. Kidney Int. 2004;66(5):1774–84. https://doi.org/10.1111/j.1523-1755.2004.00901.x.

    Article  CAS  PubMed  Google Scholar 

  203. Rizzo P, Novelli R, Rota C, Gagliardini E, Ruggiero B, Rottoli D, et al. The role of angiotensin II in parietal epithelial cell proliferation and crescent formation in glomerular diseases. Am J Pathol. 2017;187(11):2441–50. https://doi.org/10.1016/j.ajpath.2017.07.004.

    Article  CAS  PubMed  Google Scholar 

  204. Togawa H, Nakanishi K, Shima Y, Obana M, Sako M, Nozu K, et al. Increased chymase-positive mast cells in children with crescentic glomerulonephritis. Pediatr Nephrol. 2009;24(5):1071–5. https://doi.org/10.1007/s00467-008-1044-2.

    Article  PubMed  Google Scholar 

  205. Couser WG, Johnson RJ. The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int. 2014;86(5):905–14. https://doi.org/10.1038/ki.2014.49.

    Article  CAS  PubMed  Google Scholar 

  206. Kawalec A, Kiliś-Pstrusińska K. Gut microbiota alterations and primary glomerulonephritis in children: a review. Int J Mol Sci. 2023;24(1):574. https://doi.org/10.3390/ijms24010574.

    Article  CAS  Google Scholar 

  207. Mukohda M, Mizuno R, Ozaki H. Gut microflora and metabolic syndrome: new insight into the pathogenesis of hypertension. Nihon Yakurigaku Zasshi. 2022;157(5):311–5. https://doi.org/10.1254/fpj.22035.

    Article  CAS  PubMed  Google Scholar 

  208. Buffolo F, Tetti M, Mulatero P, Monticone S. Aldosterone as a mediator of cardiovascular damage. Hypertension. 2022;79(9):1899–911. https://doi.org/10.1161/HYPERTENSIONAHA.122.17964.

    Article  CAS  PubMed  Google Scholar 

  209. Gilbert KC, Brown NJ. Aldosterone and inflammation. Curr Opin Endocrinol Diabetes Obes. 2010;17(3):199–204. https://doi.org/10.1097/med.0b013e3283391989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shibata S, Nagase M, Yoshida S, Kawachi H, Fujita T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension. 2007;49(2):355–64. https://doi.org/10.1161/01.HYP.0000255636.11931.a2.

    Article  CAS  PubMed  Google Scholar 

  211. Keidar S, Kaplan M, Pavlotzky E, Coleman R, Hayek T, Hamoud S, et al. Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensinconverting enzyme and the receptors for angiotensin II and aldosterone. Circulation. 2004;109(18):2213–20. https://doi.org/10.1161/01.CIR.0000127949.05756.9D.

    Article  CAS  PubMed  Google Scholar 

  212. Hirono Y, Yoshimoto T, Suzuki N, Sugiyama T, Sakurada M, Takai S, et al. Angiotensin II receptor type 1-mediated vascular oxidative stress and proinflammatory gene expression in aldosterone-induced hypertension: the possible role of local renin-angiotensin system. Endocrinology. 2007;148(4):1688–96. https://doi.org/10.1210/en.2006-1157.

    Article  CAS  PubMed  Google Scholar 

  213. Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S, et al. Possible contributions of reactive oxygen species and mitogenactivated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004;43(4):841–8. https://doi.org/10.1161/01.HYP.0000118519.66430.22.

    Article  CAS  PubMed  Google Scholar 

  214. Jaffe IZ, Mendelsohn ME. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ Res. 2005;96(6):643–50. https://doi.org/10.1161/01.RES.0000159937.05502.d1.

    Article  CAS  PubMed  Google Scholar 

  215. Fejes-Toth G, Naray-Fejes-Toth A. Early aldosterone-regulated genes in cardiomyocytes: clues to cardiac remodeling? Endocrinology. 2007;148(4):1502–10. https://doi.org/10.1210/en.2006-1438.

    Article  CAS  PubMed  Google Scholar 

  216. Yuan J, Jia R, Bao Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J Biochem Mol Biol. 2007;40(2):180–8. https://doi.org/10.5483/bmbrep.2007.40.2.180.

    Article  CAS  PubMed  Google Scholar 

  217. Brown NJ, Kim KS, Chen YQ, Blevins LS, Nadeau JH, Meranze SG, et al. Synergistic effect of adrenal steroids and angiotensin II plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab. 2000;85(1):336–44. https://doi.org/10.1210/jcem.85.1.6305.

    Article  CAS  PubMed  Google Scholar 

  218. Calo LA, Zaghetto F, Pagnin E, Davis PA, De Mozzi P, Sartorato P, et al. Effect of aldosterone and glycyrrhetinic acid on the protein expression of PAI-1 and p22(phox) in human mononuclear leukocytes. J Clin Endocrinol Metab. 2004;89(4):1973–6. https://doi.org/10.1210/jc.2003-031545.

    Article  CAS  PubMed  Google Scholar 

  219. Mazak I, Fiebeler A, Muller DN, Park JK, Shagdarsuren E, Lindschau C, et al. Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation. 2004;109(22):2792–800. https://doi.org/10.1161/01.CIR.0000131860.80444.AB.

    Article  CAS  PubMed  Google Scholar 

  220. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatrics. 2012;171(10):1433–9. https://doi.org/10.1007/s00431-011-1440-7.

    Article  CAS  Google Scholar 

  221. Rodríguez-Iturbe B, Baggio B, Colina-Chourio J, Favaro S, García R, Sussana F, Castillo L, Borsatti A. Studies on the renin-aldosterone system in the acute nephritic syndrome. Kidney Int. 1981;19(3):445–53. https://doi.org/10.1038/ki.1981.38.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Instituto de Investigaciones Clínicas Dr. Américo Negrette, Facultad de Medicina, Universidad de Zulia, Maracaibo, Venezuela.

Funding

This manuscript has no financial support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JAM-S, AP, YC and JPH-F. The first draft of the manuscript was written by JAM-S and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jesus A. Mosquera-Sulbaran.

Ethics declarations

Conflict of interest

All the authors have declared no competing interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosquera-Sulbaran, J.A., Pedreañez, A., Carrero, Y. et al. Angiotensin II and post-streptococcal glomerulonephritis. Clin Exp Nephrol 28, 359–374 (2024). https://doi.org/10.1007/s10157-023-02446-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-023-02446-7

Keywords

Navigation