Skip to main content

Advertisement

Log in

Uremic toxin indoxyl sulfate induces dysfunction of vascular smooth muscle cells via integrin-β1/ERK signaling pathway

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Protein-bound uremic toxins (PBUTs) are reported to be one of the major culprits in chronic kidney disease–cardiovascular disease (CKD–CVD) development, yet its mechanism is not fully clear. Our previous study confirmed elevated expression of integrin-β1 (ITGβ1) in vascular smooth muscle cells of uremic patients. Thus, this study aimed to explore the relationship between PBUTs and ITGβ1 in uremic vasculature injury.

Methods

Human umbilical vein smooth muscle cells (HUVSMCs) and endothelial cells (HUVECs) were treated with two representative PUBTs, indoxyl sulfate (IS) and p-cresyl sulfate (PC). Both cells were measured for the expression of ITGβ1 and downstream signaling pathways and assayed for proliferation, migration, adhesion and apoptosis.

Results

The IS treatments were observed with significantly up-regulated ITGβ1 in HUVSMCs but not in HUVECs, while PC did not induce ITGβ1 alteration in either HUVSMCs or HUVECs. Furthermore, overexpression of ITGβ1 revealed activated downstream signal-regulated kinase (ERK) signaling pathway with promoted focal adhesion, migration, proliferation but no apoptosis in HUVSMCs by IS. These functional and pathway alterations could be significantly suppressed by RNA interference of ITGβ1. More importantly, the application of ERK1/2 inhibitor significantly suppressed the focal adhesion, migration and proliferation of HUVSMCs.

Conclusion

We first demonstrated that ITGβ1/ERK signaling pathway mediated abnormal focal adhesion, migration and proliferation of vascular smooth muscle cells stimulated by IS. ITGβ1/ERK signaling may serve as a novel therapeutic target for CKD-CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.

    Article  CAS  Google Scholar 

  2. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164(6):659–63.

    Article  Google Scholar 

  3. Thompson S, James M, Wiebe N, Hemmelgarn B, Manns B, Klarenbach S, Tonelli M, Alberta Kidney Disease Network. Cause of death in patients with reduced kidney function. J Am Soc Nephrol. 2015;26(10):2504–11.

    Article  Google Scholar 

  4. Brunet P, Gondouin B, Duval-Sabatier A, Dou L, Cerini C, Dignat-George F, Jourde-Chiche N, Argiles A, Burtey S. Does uremia cause vascular dysfunction? Kidney Blood Press Res. 2011;34(4):284–90.

    Article  CAS  Google Scholar 

  5. Gunthner T, Jankowski V, Kretschmer A, Nierhaus M, van der Giet M, Zidek W, Jankowski J. Endothelium and vascular smooth muscle cells in the context of uremia. Semin Dial. 2009;22(4):428–32.

    Article  Google Scholar 

  6. Cheung AK, Sarnak MJ, Yan G, Dwyer JT, Heyka RJ, Rocco MV, Teehan BP, Levey AS. Atherosclerotic cardiovascular disease risks in chronic hemodialysis patients. Kidney Int. 2000;58(1):353–62.

    Article  CAS  Google Scholar 

  7. Saum K, Campos B, Celdran-Bonafonte D, Nayak L, Sangwung P, Thakar C, Roy-Chaudhury P, Owens APIP. Uremic advanced glycation end products and protein-bound solutes induce endothelial dysfunction through suppression of kruppel-like factor 2. J Am Heart Assoc. 2018;7(1):e007566.

    Article  Google Scholar 

  8. Zieman SJ, Melenovsky V, Kass DA. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25(5):932–43.

    Article  CAS  Google Scholar 

  9. Garcia-Jerez A, Luengo A, Carracedo J, Ramirez-Chamond R, Rodriguez-Puyol D, Rodriguez-Puyol M, Calleros L. Effect of uraemia on endothelial cell damage is mediated by the integrin linked kinase pathway. J Physiol. 2015;593(3):601–18 (discussion 618).

    Article  CAS  Google Scholar 

  10. Henaut L, Mary A, Chillon JM, Kamel S, Massy ZA. The impact of uremic toxins on vascular smooth muscle cell function. Toxins. 2018;10(6):218.

    Article  Google Scholar 

  11. Guo J, Lu L, Hua Y, Huang K, Wang I, Huang L, Fu Q, Chen A, Chan P, Fan H, Liu Z-M, Wang BH. Vasculopathy in the setting of cardiorenal syndrome: roles of protein-bound uremic toxins. Am J Physiol Heart Circ Physiol. 2017;313(1):H1–13.

    Article  Google Scholar 

  12. Vanholder R, Glorieux G, De Smet R, Lameire N, European Uremic Toxin Work Group. New insights in uremic toxins. Kidney Int Suppl. 2003;84:S6-10.

    Article  CAS  Google Scholar 

  13. Legate KR, Wickstrom SA, Fassler R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 2009;23(4):397–418.

    Article  CAS  Google Scholar 

  14. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  Google Scholar 

  15. Wang W, Luo BH. Structural basis of integrin transmembrane activation. J Cell Biochem. 2010;109(3):447–52.

    CAS  PubMed  Google Scholar 

  16. Campos LS, Leone DP, Relvas JB, Brakebusch C, Fassler R, Suter U, Ffrench-Constant C. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development. 2004;131(14):3433–44.

    Article  CAS  Google Scholar 

  17. Ke C, Jin H, Cai J. AFM studied the effect of celastrol on beta1 integrin-mediated HUVEC adhesion and migration. Scanning. 2013;35(5):316–26.

    Article  CAS  Google Scholar 

  18. Tanigawa K, Maekawa M, Kiyoi T, Nakayama J, Kitazawa R, Kitazawa S, Semba K, Taguchi T, Akita S, Yoshida M, Ishimaru K, Watanabe Y, Higashiyama S. SNX9 determines the surface levels of integrin beta1 in vascular endothelial cells: Implication in poor prognosis of human colorectal cancers overexpressing SNX9. J Cell Physiol. 2019;234(10):17280–94.

    Article  CAS  Google Scholar 

  19. Wu X, Wang J, Jiang H, Hu Q, Chen J, Zhang J, Zhu R, Liu W, Li B. Wnt3a activates beta1-integrin and regulates migration and adhesion of vascular smooth muscle cells. Mol Med Rep. 2014;9(4):1159–64.

    Article  CAS  Google Scholar 

  20. Zhou C, Li C, Wang Q, Wu M, Mohan C, Hu D, Peng A. Histopathological and proteomic analyses identify integrin-β1 as a potential mediator of phlebosclerosis in uremic patients. Clin Exp Nephrol. 2019;23(9):1100–8.

    Article  CAS  Google Scholar 

  21. Cohen G, Glorieux G, Thornalley P, Schepers E, Meert N, Jankowski J, Jankowski V, Argiles A, Anderstam B, Brunet P, Cerini C, Dou L, Deppisch R, Marescau B, Massy Z, Perna A, Raupachova J, Rodriguez M, Stegmayr B, Vanholder R, Horl WH, European Uremic Toxin Work Group. Review on uraemic toxins III: recommendations for handling uraemic retention solutes in vitro–towards a standardized approach for research on uraemia. Nephrol Dial Transplant. 2007;22(12):3381–90.

    Article  CAS  Google Scholar 

  22. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2(2):329–33.

    Article  CAS  Google Scholar 

  23. Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell. 2002;110(5):599–611.

    Article  CAS  Google Scholar 

  24. Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol. 2014;25(9):1897–907.

    Article  CAS  Google Scholar 

  25. Muteliefu G, Enomoto A, Niwa T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J Ren Nutr. 2009;19(1):29–32.

    Article  CAS  Google Scholar 

  26. Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K, Yamada KM. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol. 1999;146(2):389–403.

    Article  CAS  Google Scholar 

  27. Wen S, Hou Y, Fu L, Xi L, Yang D, Zhao M, Qin Y, Sun K, Teng Y, Liu M. Cancer-associated fibroblast (CAF)-derived IL32 promotes breast cancer cell invasion and metastasis via integrin beta3-p38 MAPK signalling. Cancer Lett. 2019;442:320–32.

    Article  CAS  Google Scholar 

  28. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT, Horwitz AF. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004;6(2):154–61.

    Article  CAS  Google Scholar 

  29. Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem. 2001;276(51):48382–8.

    Article  CAS  Google Scholar 

  30. Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013;513(1):1–13.

    Article  CAS  Google Scholar 

  31. Ma J, Liu X, Chen H, Abbas MK, Yang L, Sun H, Sun T, Wu B, Yang S, Zhou D. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci. 2021;112(2):655–67.

    Article  CAS  Google Scholar 

  32. Carlson SM, Chouinard CR, Labadorf A, Lam CJ, Schmelzle K, Fraenkel E, White FM. Large-scale discovery of ERK2 substrates identifies ERK-mediated transcriptional regulation by ETV3. Sci Signal. 2011;4(1):rs11.

    PubMed  PubMed Central  Google Scholar 

  33. Reusch JE, Klemm DJ. Cyclic AMP response element-binding protein in the vessel wall: good or bad? Circulation. 2003;108(10):1164–6.

    Article  Google Scholar 

  34. Yamamoto H, Tsuruoka S, Ioka T, Ando H, Ito C, Akimoto T, Fujimura A, Asano Y, Kusano E. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006;69(10):1780–5.

    Article  CAS  Google Scholar 

  35. Shimizu H, Hirose Y, Nishijima F, Tsubakihara Y, Miyazaki H. ROS and PDGF-beta [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am J Physiol Cell Physiol. 2009;297(2):C389–96.

    Article  CAS  Google Scholar 

  36. Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant. 2009;24(7):2051–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (#81971822).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Xue or Ai Peng.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

No human participants or animals were involved in this study.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10157_2022_2195_MOESM1_ESM.docx

Fig. S1 mRNA expression of ITGβ1 with gene knockdown by si-ITGβ1. Data are presented as the mean ± standard deviation of three independent experiments. **P < 0.01compared with NC group with Student’s t test. NC negative control, si-ITGβ1 ITGβ1-siRNA

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Zhou, C., Hu, D. et al. Uremic toxin indoxyl sulfate induces dysfunction of vascular smooth muscle cells via integrin-β1/ERK signaling pathway. Clin Exp Nephrol 26, 640–648 (2022). https://doi.org/10.1007/s10157-022-02195-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-022-02195-z

Keywords

Navigation