Skip to main content

Advertisement

Log in

Role and expression of non-classical human leukocyte antigen-G in renal transplanted allografts

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The non-classical class I molecule human leukocyte antigen-G (HLA-G) has great potential to modulate the immune response. However, the mechanism underlying HLA-G induction remains unknown. Therefore, this study aimed to determine the factors that induce HLA-G expression on proximal tubular epithelial cells (pTECs) in renal transplanted allografts in vivo and in vitro.

Methods

This study included 40 adult Japanese patients with renal allografts (35 and five patients with kidneys from living and deceased donors, respectively) who survived for at least 1 year. We evaluated HLA-G1/5 expression using an immunofluorescence method and investigated the induction of HLA-G expression in primary cultured human pTECs by cytokines and immunosuppressants.

Results

The HLA-G expression was identified in the perinuclear region or on the basement membrane of pTECs of renal biopsy tissue in 12 (30%) of 40 patients at 2–4 weeks and at 1 year following transplantation. A reduction of 30% in the estimated glomerular filtration rate was lower in the HLA-G-positive group than that of the negative group (p = 0.016). Cox proportional hazard models also demonstrated that HLA-G1/5 expression on pTECs was an independent predictor of improved renal allograft function (hazard ratio, 0.189; 95% CI 0.041–0.850, p = 0.030). Interferon-beta was the most powerful inducer of HLA-G expression in vitro, whereas the immunosuppressants everolimus, tacrolimus, cyclosporin, and dexamethasone did not induce any expression.

Conclusion

Unlike immunosuppressants, acquired HLA-G expression might confer long-term renal preservation effects in renal transplanted allografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Paul P, Cabestre FA, Ibrahim EC, Lefebvre S, Khalil-Daher I, Vazeux G, et al. Identification of HLA-G7 as a new splice variant of the HLA-G mRNA and expression of soluble HLA-G5, -G6, and -G7 transcripts in human transfected cells. Hum Immunol. 2000;61:1138–49.

    Article  CAS  PubMed  Google Scholar 

  2. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. 1990;248:220–3.

    Article  CAS  PubMed  Google Scholar 

  3. Mallet V, Blaschitz A, Crisa L, Schmitt C, Fournel S, King A, et al. HLA-G in the human thymus: a subpopulation of medullary epithelial but not CD83 (+) dendritic cells expresses HLA-G as a membrane-bound and soluble protein. Int Immunol. 1999;11:889–98.

    Article  CAS  PubMed  Google Scholar 

  4. Le Discorde M, Moreau P, Sabatier P, Legeais JM, Carosella ED. Expression of HLA-G in human cornea, an immune-privileged tissue. Hum Immunol. 2003;64:1039–44.

    Article  PubMed  Google Scholar 

  5. Cirulli V, Zalatan J, McMaster M, Prinsen R, Salomon DR, Ricordi C, et al. The class I HLA repertoire of pancreatic islets comprises the nonclassical class Ib antigen HLA-G. Diabetes. 2006;55:1214–22.

    Article  CAS  PubMed  Google Scholar 

  6. Menier C, Rabreau M, Challier JC, Le Discorde M, Carosella ED, Rouas-Freiss N. Erythroblasts secrete the nonclassical HLA-G molecule from primitive to definitive hematopoiesis. Blood. 2004;104:3153–60.

    Article  CAS  PubMed  Google Scholar 

  7. Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A. 1998;95:4510–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rouas-Freiss N, Moreau P, Ferrone S, Carosella ED. HLA-G proteins in cancer: do they provide tumor cells with an escape mechanism? Cancer Res. 2005;65:10139–44.

    Article  CAS  PubMed  Google Scholar 

  9. Lila N, Carpentier A, Amrein C, Khalil-Daher I, Dausset J, Carosella ED. Implication of HLA-G molecule in heart-graft acceptance. Lancet. 2000;355:2138.

    Article  CAS  PubMed  Google Scholar 

  10. Wiendl H, Feger U, Mittelbronn M, Jack C, Schreiner B, Stadelmann C, et al. Expression of the immune-tolerogenic major histocompatibility molecule HLA-G in multiple sclerosis: implications for CNS immunity. Brain. 2005;128:2689–704.

    Article  PubMed  Google Scholar 

  11. Khosrotehrani K, Le Danff C, Reynaud-Mendel B, Dubertret L, Carosella ED, Aractingi S. HLA-G expression in atopic dermatitis. J Invest Dermatol. 2001;117:750–2.

    Article  CAS  PubMed  Google Scholar 

  12. Aractingi S, Briand N, Le Danff C, Viguier M, Bachelez H, Michel L, et al. HLA-G and NK receptor are expressed in psoriatic skin: a possible pathway for regulating infiltrating T cells? Am J Pathol. 2001;159:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lozano JM, Gonzalez R, Kindelan JM, Rouas-Freiss N, Caballos R, Dausset J, et al. Monocytes and T lymphocytes in HIV-1-positive patients express HLA-G molecule. AIDS. 2002;16(3):347–51.

    Article  CAS  PubMed  Google Scholar 

  14. Lafon M, Prehaud C, Megret F, Lafage M, Mouillot G, Roa M, et al. Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol. 2005;79:15226–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Le Rond S, Le Maoult J, Creput C, Menier C, Deschamps M, Le Friec G, et al. Alloreactive CD4+ and CD8+ T cells express the immunotolerant HLA-G molecule in mixed lymphocyte reactions: in vivo implications in transplanted patients. Eur J Immunol. 2004;34:649–60.

    Article  PubMed  Google Scholar 

  16. Creput C, Durrbach A, Menier C, Guettier C, Samuel D, Dausset J, et al. Human leukocyte antigen-G (HLA-G) expression in biliary epithelial cells is associated with allograft acceptance in liver-kidney transplantation. J Hepatol. 2003;39:587–94.

    Article  CAS  PubMed  Google Scholar 

  17. Brugiere O, Thabut G, Pretolani M, Krawice-Radanne I, Dill C, Herbreteau A, et al. Immunohistochemical study of HLA-G expression in lung transplant recipients. Am J Transplant. 2009;9:1427–38.

    Article  CAS  PubMed  Google Scholar 

  18. Brugiere O, Thabut G, Krawice-Radanne I, Rizzo R, Dauriat G, Danel C, et al. Role of HLA-G as a predictive marker of low risk of chronic rejection in lung transplant recipients: a clinical prospective study. Am J Transplant. 2015;15:461–71.

    Article  CAS  PubMed  Google Scholar 

  19. Naji A, Le Rond S, Durrbach A, Krawice-Radanne I, Creput C, Daouya M, et al. CD3+CD4low and CD3+CD8low are induced by HLA-G: novel human peripheral blood suppressor T-cell subsets involved in transplant acceptance. Blood. 2007;110:3936–48.

    Article  CAS  PubMed  Google Scholar 

  20. Zarkhin V, Talisetti A, Li L, Wozniak LJ, McDiarmid SV, Cox K, et al. Expression of soluble HLA-G identifies favorable outcomes in liver transplant recipients. Transplantation. 2010;90:1000–5.

    Article  CAS  PubMed  Google Scholar 

  21. Basturk B, Karakayali F, Emiroglu R, Sozer O, Haberal A, Bal D, et al. Human leukocyte antigen-G, a new parameter in the follow-up of liver transplantation. Transplant Proc. 2006;38:571–4.

    Article  CAS  PubMed  Google Scholar 

  22. Rebmann V, Bartsch D, Wunsch A, Mollenbeck P, Golda T, Viebahn R, et al. Soluble total human leukocyte antigen class I and human leukocyte antigen-G molecules in kidney and kidney/pancreas transplantation. Hum Immunol. 2009;70:995–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kaneku H. Detection of soluble HLA-G and its correlation with kidney transplant outcome. Clin Transpl. 2006: 447–54.

  24. Zilinska Z, Bandzuchova H, Chrastina M, Trebaticky B, Breza J Sr, Handzusova M, et al. Expression of HLA-G transcripts in graft biopsy samples of renal transplant recipients. Transpl Immunol. 2015;33:159–65.

    Article  CAS  PubMed  Google Scholar 

  25. Blanco O, Tirado I, Munoz-Fernandez R, Abadia-Molina AC, Garcia-Pacheco JM, Pena J, et al. Human decidual stromal cells express HLA-G: effects of cytokines and decidualization. Hum Reprod. 2008;23:144–52.

    Article  CAS  PubMed  Google Scholar 

  26. Mizuno S, Emi N, Kasai M, Ishitani A, Saito H. Aberrant expression of HLA-G antigen in interferon gamma-stimulated acute myelogenous leukaemia. Br J Haematol. 2000;111:280–2.

    CAS  PubMed  Google Scholar 

  27. Sheshgiri R, Rao V, Tumiati LC, Xiao R, Prodger JL, Badiwala M, et al. Progesterone induces human leukocyte antigen-g expression in vascular endothelial and smooth-muscle cells. Circulation. 2008;118:S58-64.

    Article  CAS  PubMed  Google Scholar 

  28. Crispim JC, Duarte RA, Soares CP, Costa R, Silva JS, Mendes-Junior CT, et al. Human leukocyte antigen-G expression after kidney transplantation is associated with a reduced incidence of rejection. Transpl Immunol. 2008;18:361–7.

    Article  CAS  PubMed  Google Scholar 

  29. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  30. Coresh J, Turin TC, Matsushita K, Sang Y, Ballew SH, Appel LJ, et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA. 2014;311:2518–31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Qiu J, Terasaki PI, Miller J, Mizutani K, Cai J, Carosella ED. Soluble HLA-G expression and renal graft acceptance. Am J Transplant. 2006;6:2152–6.

    Article  CAS  PubMed  Google Scholar 

  32. Racca AL, Veaute CM, Bailat AS, Gaite L, Arriola M, Hajos SE, et al. Expression of HLA-G and MICA mRNA in renal allograft. Transpl Immunol. 2009;21:10–2.

    Article  CAS  PubMed  Google Scholar 

  33. Okushi Y, Okino K, Mukai K, Matsui Y, Hayashi N, Fujimoto K, et al. Circulating and renal expression of HLA-G prevented chronic renal allograft dysfunction in Japanese recipients. Clin Exp Nephrol. 2017;21:932–40.

    Article  CAS  PubMed  Google Scholar 

  34. Contini P, Ghio M, Poggi A, Filaci G, Indiveri F, Ferrone S, et al. Soluble HLA-A,-B,-C and -G molecules induce apoptosis in T and NK CD8+ cells and inhibit cytotoxic T cell activity through CD8 ligation. Eur J Immunol. 2003;33:125–34.

    Article  CAS  PubMed  Google Scholar 

  35. Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O’Callaghan CA, et al. Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol. 1998;160:3096–100.

    Article  CAS  PubMed  Google Scholar 

  36. Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 1999;189:1093–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rouas-Freiss N, Marchal RE, Kirszenbaum M, Dausset J, Carosella ED. The alpha1 domain of HLA-G1 and HLA-G2 inhibits cytotoxicity induced by natural killer cells: is HLA-G the public ligand for natural killer cell inhibitory receptors? Proc Natl Acad Sci U S A. 1997;94:5249–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Riteau B, Rouas-Freiss N, Menier C, Paul P, Dausset J, Carosella ED. HLA-G2, -G3, and -G4 isoforms expressed as nonmature cell surface glycoproteins inhibit NK and antigen-specific CTL cytolysis. J Immunol. 2001;166:5018–26.

    Article  CAS  PubMed  Google Scholar 

  39. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED. HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci U S A. 2004;101:7064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, et al. Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol. 2006;176:1331–9.

    Article  CAS  PubMed  Google Scholar 

  41. Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella ED, et al. Trogocytosis-based generation of suppressive NK cells. EMBO J. 2007;26:1423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A. Tolerization of dendritic cells by HLA-G. Eur J Immunol. 2005;35:1133–42.

    Article  CAS  PubMed  Google Scholar 

  43. Liang S, Ristich V, Arase H, Dausset J, Carosella ED, Horuzsko A. Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6–STAT3 signaling pathway. Proc Natl Acad Sci U S A. 2008;105:8357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amiot L, Vu N, Samson M. Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res. 2014;2014:298569.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kronsteiner B, Peterbauer-Scherb A, Grillari-Voglauer R, Redl H, Gabriel C, van Griensven M, et al. Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cell Immunol. 2011;267:30–8.

    Article  CAS  PubMed  Google Scholar 

  46. Sampangi S, Kassianos AJ, Wang X, Beagley KW, Klein T, Afrin S, et al. The mechanisms of human renal epithelial cell modulation of autologous dendritic cell phenotype and function. PLoS ONE. 2015;10:e0134688.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sampangi S, Wang X, Beagley KW, Klein T, Afrin S, Healy H, et al. Human proximal tubule epithelial cells modulate autologous B-cell function. Nephrol Dial Transplant. 2015;30:1674–83.

    Article  CAS  PubMed  Google Scholar 

  48. Sheshgiri R, Gustafsson F, Sheedy J, Rao V, Ross HJ, Delgado DH. Everolimus but not mycophenolate mofetil therapy is associated with soluble HLA-G expression in heart transplant patients. J Heart Lung Transplant. 2009;28:1193–7.

    Article  PubMed  Google Scholar 

  49. Mociornita AG, Adamson MB, Tumiati LC, Ross HJ, Rao V, Delgado DH. Effects of everolimus and HLA-G on cellular proliferation and neutrophil adhesion in an in vitro model of cardiac allograft vasculopathy. Am J Transplant. 2018;18:3038–44.

    Article  CAS  PubMed  Google Scholar 

  50. Moreau P, Faure O, Lefebvre S, Ibrahim EC, O’Brien M, Gourand L, et al. Glucocorticoid hormones upregulate levels of HLA-G transcripts in trophoblasts. Transplant Proc. 2001;33:2277–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the assistance of their colleagues at the Department of Nephrology.

Funding

This study was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science, (C) 18K08256 (HY); Grants for Intractable Renal Disease Research and for Health and Labour Sciences Research from the Ministry of Health, Labour, and Welfare of Japan (HY); a Grant-in-Aid for Investigating New Evidence to Understand the safety of Renal Transplantation from marginal Donors; Promotion of Renal Disease Control Grants from the Japan Agency for Medical Research and Development (K Furuichi, HY); and Grants for a Cooperative Study from Kanazawa Medical University (No. C2017-4, C2018-2) (HY).

Author information

Authors and Affiliations

Authors

Contributions

SK drafted and wrote the manuscript with input as appropriate from the other investigators, interpreted clinical data, and conducted in vitro experiments. YO and HA performed kidney biopsies, and helped to collect clinical data. KF provided advice about the statistics for clinical research and in vitro experiments, and helped to collect clinical data. KF interpreted histopathological findings and edited the manuscript. HY designed the study and edited the manuscript.

Corresponding authors

Correspondence to Sho Kumano or Hitoshi Yokoyama.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee at which the studies were conducted (IRB approval number 186) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10157_2020_1999_MOESM1_ESM.pptx

Supplementary file1 Supplementary Fig. 1 Characteristics of human primary cultured proximal tubular epithelial cells. Morphological characteristics of these cells were defined as cobblestone and/or tubular-like formations, cytokeratin 18 expression was detected using rabbit monoclonal E431-1 (a), alkaline phosphatase production detected using Vector Red AP substrate (b), HLA-G expression as green stain (Cytosol) and orange in cis-Golgi (c). Supplementary Fig. 2 HLA-G mRNA expression in primary cultured human proximal tubular epithelial cells. Expression of HLA-G mRNA cells was detected by RT-PCR. Positive control HLA-DR and control GAPDH (A); HLA-G mRNA RQ stimulated at 48 h with cytokines (B). The representative data of at least 3 times experiments was shown in figure (PPTX 2298 kb)

Supplementary file2 Supplementary Table. Changes in tissue expression of HLA-G (DOCX 20 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumano, S., Okushi, Y., Fujimoto, K. et al. Role and expression of non-classical human leukocyte antigen-G in renal transplanted allografts. Clin Exp Nephrol 25, 428–438 (2021). https://doi.org/10.1007/s10157-020-01999-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-020-01999-1

Keywords

Navigation