Skip to main content

Advertisement

Log in

Compared effects of calcium and sodium polystyrene sulfonate on mineral and bone metabolism and volume overload in pre-dialysis patients with hyperkalemia

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Hyperkalemia is prevalent in end-stage renal disease patients, being involved in life-threatening arrhythmias. Although polystyrene sulfonate (PS) is commonly used for the treatment of hyperkalemia, direct comparison of effects between calcium and sodium PS (CPS and SPS) on mineral and bone metabolism has not yet been studied.

Methods

In a randomized and crossover design, 20 pre-dialysis patients with hyperkalemia (>5 mmol/l) received either oral CPS or SPS therapy for 4 weeks.

Results

After 4-week treatments, there was no significant difference of changes in serum potassium (K) from the baseline (ΔK) between the two groups. However, SPS significantly decreased serum calcium (Ca) and magnesium (Mg) and increased intact parathyroid hormone (iPTH) values, whereas CPS reduced iPTH. ΔiPTH was inversely correlated with ΔCa and ΔMg (r = −0.53 and r = −0.50, respectively). Furthermore, sodium (Na) and atrial natriuretic peptide (ANP) levels were significantly elevated in patients with SPS, but not with CPS, whereas ΔNa and ΔANP were significantly correlated with each other in all the patients. We also found that ΔNa and Δ(Na to chloride ratio) were positively correlated with ΔHCO3 . In artificial colon fluid, CPS increased Ca and decreased Na. Furthermore, SPS greatly reduced K, Mg, and NH3.

Conclusion

Compared with SPS, CPS may be safer for the treatment of hyperkalemia in pre-dialysis patients, because it did not induce hyperparathyroidism or volume overload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einhorn LM, Zhan M, Hsu VD, Walker LD, Moen MF, Seliger SL, et al. The frequency of hyperkalemia and its significance in chronic kidney disease. Arch Intern Med. 2009;169(12):1156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torlén K, Kalantar-Zadeh K, Molnar MZ, Vashistha T, Mehrotra R. Serum potassium and cause-specific mortality in a large peritoneal dialysis cohort. Clin J Am Soc Nephrol. 2012;7(8):1272–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jarman PR, Kehely AM, Mather HM. Hyperkalaemia in diabetes: prevalence and associations. Postgrad Med J. 1995;71(839):551–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  6. Palmer BF. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. N Engl J Med. 2004;351(6):585–92.

    Article  CAS  PubMed  Google Scholar 

  7. Takaichi K, Takemoto F, Ubara Y, Mori Y. Analysis of factors causing hyperkalemia. Intern Med. 2007;46(12):823–9.

    Article  PubMed  Google Scholar 

  8. Sterns RH, Grieff M, Bernstein PL. Treatment of hyperkalemia: something old, something new. Kidney Int. 2016;89(3):546–54.

    Article  CAS  PubMed  Google Scholar 

  9. Watson M, Abbott KC, Yuan CM. Damned if you do, damned if you don’t: potassium binding resins in hyperkalemia. Clin J Am Soc Nephrol. 2010;5(10):1723–6.

    Article  CAS  PubMed  Google Scholar 

  10. Tomino Y, Yamazaki T, Shou I, Tsuge T, Satake K, Takeda Y, et al. Dose-response to a jelly preparation of calcium polystyrene sulfonate in patients with hyperkalemia–changes in serum potassium levels with or without a RAAS inhibitor. Clin Nephrol. 2007;68(6):379–85.

    Article  CAS  PubMed  Google Scholar 

  11. Lepage L, Dufour AC, Doiron J, Handfield K, Desforges K, Bell R, et al. Randomized clinical trial of sodium polystyrene sulfonate for the treatment of mild hyperkalemia in CKD. Clin J Am Soc Nephrol. 2015;10(12):2136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berlyne GM, Janabi K, Shaw AB. Dangers of resonium A in the treatment of hyperkalemia in renal failure. Lancet. 1966;1(7430):167–9.

    Article  CAS  PubMed  Google Scholar 

  13. Frohnert PP, Johnson WJ, Mueller GJ, Tauxe WN, McCall JT. Resin treatment of hyperkalemia. II. Clinical experience with a cation exchange resin (calcium cycle). J Lab Clin Med. 1968;71(5):840–6.

    CAS  PubMed  Google Scholar 

  14. Block GA, Klassen PS, Lazarus JM, Ofsthun N, Lowrie EG, Chertow GM. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol. 2004;15(8):2208–18.

    Article  CAS  PubMed  Google Scholar 

  15. Block GA, Zaun D, Smits G, Persky M, Brillhart S, Nieman K, et al. Cinacalcet hydrochloride treatment significantly improves all-cause and cardiovascular survival in a large cohort of hemodialysis patients. Kidney Int. 2010;78(6):578–89.

    Article  CAS  PubMed  Google Scholar 

  16. Komaba H, Kakuta T, Fukagawa M. Diseases of the parathyroid gland in chronic kidney disease. Clin Exp Nephrol. 2011;15(6):797–809.

    Article  CAS  PubMed  Google Scholar 

  17. Jadoul M, Albert JM, Akiba T, Akizawa T, Arab L, Bragg-Gresham JL, et al. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2006;70(7):1358–66.

    Article  CAS  PubMed  Google Scholar 

  18. Taniguchi M, Fukagawa M, Fujii N, Hamano T, Shoji T, Yokoyama K, et al. Serum phosphate and calcium should be primarily and consistently controlled in prevalent hemodialysis patients. Ther Apher Dial. 2013;17(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  19. Fukagawa M, Kido R, Komaba H, Onishi Y, Yamaguchi T, Hasegawa T, et al. Abnormal mineral metabolism and mortality in hemodialysis patients with secondary hyperparathyroidism: evidence from marginal structural models used to adjust for time-dependent confounding. Am J Kidney Dis. 2014;63(6):979–87.

    Article  CAS  PubMed  Google Scholar 

  20. George J, Majeed W, Mackenzie IS, Macdonald TM, Wei L. Association between cardiovascular events and sodium-containing effervescent, dispersible, and soluble drugs: nested case-control study. BMJ. 2013;347:f6954.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takase H, Sugiura T, Kimura G, Ohte N, Dohi Y. Dietary sodium consumption predicts future blood pressure and incident hypertension in the Japanese normotensive general population. J Am Heart Assoc. 2015;4(8):e001959.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Manabe R, Fukami K, Ando R, Sakai K, Kusumoto T, Hazama T, et al. Effects of switching from calcium carbonate to lanthanum carbonate on bone mineral metabolism in hemodialysis patients. Ther Apher Dial. 2013;17(Suppl 1):35–40.

    Article  CAS  PubMed  Google Scholar 

  23. Clase CM, Norman GL, Beecroft ML, Churchill DN. Albumin-corrected calcium and ionized calcium in stable haemodialysis patients. Nephrol Dial Transplant. 2000;15(11):1841–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hynes D, Bates S, Loughman A, Klim S, French C, Kelly AM. Arteriovenous blood gas agreement in intensive care patients with varying levels of circulatory compromise: a pilot study. Crit Care Resusc. 2015;17(4):253–6.

    PubMed  Google Scholar 

  25. Yamada T, Alpers D, Laine L, Owyang C, Powell D. Approach to the patient with diarrhea. Textb Gastroenterol. 2003;1:858–64.

    Google Scholar 

  26. Evans BM, Jones NC, Milne MD, Yellowlees H. Ion-exchange resins in the treatment of anuria. Lancet. 1953;265(6790):791–5.

    Article  CAS  PubMed  Google Scholar 

  27. Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol. 2006;127(5):525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol. 2011;22(2):216–24.

    Article  CAS  PubMed  Google Scholar 

  29. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.

    Article  CAS  PubMed  Google Scholar 

  30. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.

    Article  CAS  PubMed  Google Scholar 

  31. Shoback DM, Thatcher JG, Brown EM. Interaction of extracellular calcium and magnesium in the regulation of cytosolic calcium and PTH release in dispersed bovine parathyroid cells. Mol Cell Endocrinol. 1984;38(2–3):179–86.

    Article  CAS  PubMed  Google Scholar 

  32. Sakaguchi Y, Shoji T, Hayashi T, Suzuki A, Shimizu M, Mitsumoto K, et al. Hypomagnesemia in type 2 diabetic nephropathy: a novel predictor of end-stage renal disease. Diabetes Care. 2012;35(7):1591–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakaguchi Y, Fujii N, Shoji T, Hayashi T, Rakugi H, Isaka Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014;85(1):174–81.

    Article  CAS  PubMed  Google Scholar 

  34. Bolland MJ, Avenell A, Baron JA, Grey A, MacLennan GS, Gamble GD, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ. 2010;341:c3691.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jadoul M, Karaboyas A, Goodkin DA, Tentori F, Li Y, Labriola L, et al. Potassium-binding resins: associations with serum chemistries and interdialytic weight gain in hemodialysis patients. Am J Nephrol. 2014;39(3):252–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Powell DW, Berschneider HM, Lawson LD, Martens H. Regulation of water and ion movement in intestine. Ciba Found Symp. 1985;112:14–33.

    CAS  PubMed  Google Scholar 

  37. Kamel KS, Schreiber M. Asking the question again: are cation exchange resins effective for the treatment of hyperkalemia? Nephrol Dial Transplant. 2012;27(12):4294–7.

    Article  PubMed  Google Scholar 

  38. van de Strihou CY, Dieu JP. Potassium deficiency acidosis in the dog: effect of sodium and potassium balance on renal response to a chronic acid load. Kidney Int. 1977;11(5):335–47.

    Article  Google Scholar 

  39. Lindner G, Schwarz C, Grüssing H, Kneidinger N, Fazekas A, Funk GC. Rising serum sodium levels are associated with a concurrent development of metabolic alkalosis in critically ill patients. Intensive Care Med. 2013;39(3):399–405.

    Article  CAS  PubMed  Google Scholar 

  40. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23(2):204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med. 2014;371(19):1821–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported, in part, by Grants-in-Aid for Welfare and Scientific Research (C) (no. 16k09637) (K.F) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Fukami.

Ethics declarations

Conflict of interest

Dr. Fukami has received honoraria such as lecture fees from Sanwa (Sanwa Kagaku Kenkyusyo). This paper has not been published previously in whole or part.

Human rights

(with IRB approval number) All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional ethics committee at which the studies were conducted (Approval No. 13170) and with the 1964 Helsinki Declaration and its later amendments of comparable ethical standards. This trial was registered with the University Hospital Medical Information Network clinical trials database (UMIN 000021955).

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, Y., Ueda, K., Yamagishi, Si. et al. Compared effects of calcium and sodium polystyrene sulfonate on mineral and bone metabolism and volume overload in pre-dialysis patients with hyperkalemia. Clin Exp Nephrol 22, 35–44 (2018). https://doi.org/10.1007/s10157-017-1412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-017-1412-y

Keywords

Navigation