Skip to main content
Log in

Association of interactions between dietary salt consumption and hypertension-susceptibility genetic polymorphisms with blood pressure among Japanese male workers

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Blood pressure is influenced by hereditary factors and dietary habits. The objective of this study was to examine the effect of dietary salt consumption and single-nucleotide polymorphisms (SNPs) on blood pressure (BP).

Methods

This was a cross-sectional analysis of 2728 male participants who participated in a health examination in 2009. Average dietary salt consumption was estimated using electronically collected meal purchase data from cafeteria. A multivariate analysis, adjusting for clinically relevant factors, was conducted to examine whether the effect on BP of salt consumption, SNPs, and interaction between salt consumption and each SNP. This study examined the SNPs AGT rs699 (Met235Thr), ADD1 rs4961 (Gly460Trp), NPPA rs5063 (Val32Met), GPX1 rs1050450 (Pro198Leu), and AGTR1 rs5186 (A1166C) in relation to hypertension and salt sensitivity.

Results

BP was not significantly associated with SNPs or salt consumption. The interaction between salt consumption and SNPs with systolic BP showed a significant association in NPPA rs5063 (Val32Met) (P = 0.023) and a marginal trend toward significance in rs4961 and rs1050450 (P = 0.060 and 0.067, respectively).

Conclusion

The effect of salt consumption on BP differed by genotype. Dietary salt consumption and genetic variation can predict a high risk of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shimamoto K, Ando K, Fujita T, et al. The Japanese society of hypertension guidelines for the management of hypertension (JSH 2014). Hypertens Res. 2014;37(4):253–390. doi:10.1038/hr.2014.20.

    Article  PubMed  Google Scholar 

  2. World Health Organization. WHO guideline: sodium intake for adults and children. Geneva: WHO Press; 2012.

    Google Scholar 

  3. The National Health and Nutrition Survey in Japan, 2012 (homepage on the Internet). http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h24-houkoku.pdf. Accessed 30 Nov 2014.

  4. Mente A, O’Donnell MJ, Rangarajan S, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371(7):601–11. doi:10.1056/NEJMoa1311989.

    Article  PubMed  Google Scholar 

  5. The National Health and Nutrition Survey in Japan, 2006 (homepage on the Internet). http://www.mhlw.go.jp/houdou/2008/04/dl/h0430-2a.pdf. doi:10.1291/hypres.30.887.

  6. Beeks E, Kessels AG, Kroon AA, et al. Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens. 2004;22(7):1243–9.

    Article  CAS  PubMed  Google Scholar 

  7. Sanada H, Jones JE, Jose PA. Genetics of salt-sensitive hypertension. Curr Hypertens Rep. 2011;13(1):55–66. doi:10.1007/s11906-010-0167-6.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelly TN, He J. Genomic epidemiology of blood pressure salt sensitivity. J Hypertens. 2012;30(5):861–73. doi:10.1097/HJH.0b013e3283524949.

    Article  CAS  PubMed  Google Scholar 

  9. Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9. doi:10.1038/nature10405.

    Article  CAS  PubMed  Google Scholar 

  10. Kawano Y, Tsuchihashi T, Matsuura H, et al. Report of the working group for dietary salt reduction of the Japanese society of hypertension: (2) assessment of salt intake in the management of hypertension. Hypertens Res. 2007;30(10):887–93. doi:10.1291/hypres.30.887.

    Article  CAS  PubMed  Google Scholar 

  11. Kawasaki T, Itoh K, Uezono K, et al. A simple method for estimating 24 h urinary sodium and potassium excretion from second morning voiding urine specimen in adults. Clin Exp Pharmacol Physiol. 1993;20(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka T, Okamura T, Miura K, et al. A simple method to estimate populational 24-h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens. 2002;16(2):97–103. doi:10.1038/sj.jhh.1001307.

    Article  CAS  PubMed  Google Scholar 

  13. Nakatochi M, Ushida Y, Yasuda Y, et al. Identification of an interaction between VWF rs7965413 and platelet count as a novel risk marker for metabolic syndrome: an extensive search of candidate polymorphisms in a case-control study. PLoS ONE. 2015;10(2):e0117591. doi:10.1371/journal.pone.0117591.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nishida N, Tanabe T, Takasu M, et al. Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem. 2007;364(1):78–85. doi:10.1016/j.ab.2007.02.005.

    Article  CAS  PubMed  Google Scholar 

  15. R Core Team. R: a language and environment for statistical computing (homepage on the Internet). Vienna: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 8 Dec 2014.

  16. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53. doi:10.1038/nature08494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levin ER, Gardner DG, Samson WK. Natriuretic peptides. N Engl J Med. 1998;339(5):321–8. doi:10.1056/NEJM199807303390507.

    Article  CAS  PubMed  Google Scholar 

  18. Conen D, Glynn RJ, Buring JE, et al. Natriuretic peptide precursor a gene polymorphisms and risk of blood pressure progression and incident hypertension. Hypertension. 2007;50(6):1114–9. doi:10.1161/HYPERTENSIONAHA.107.097634.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang S, Mao G, Zhang Y, et al. Association between human atrial natriuretic peptide Val7Met polymorphism and baseline blood pressure, plasma trough irbesartan concentrations, and the antihypertensive efficacy of irbesartan in rural Chinese patients with essential hypertension. Clin Ther. 2005;27(11):1774–84. doi:10.1016/j.clinthera.2005.11.008.

    Article  CAS  PubMed  Google Scholar 

  20. Katsuya T, Ishikawa K, Sugimoto K, et al. Salt sensitivity of Japanese from the viewpoint of gene polymorphism. Hypertens Res. 2003;26(7):521–5.

    Article  PubMed  Google Scholar 

  21. Sugimoto K, Hozawa A, Katsuya T, et al. Alpha-Adducin Gly460Trp polymorphism is associated with low renin hypertension in younger subjects in the Ohasama study. J Hypertens. 2002;20(9):1779–84.

    Article  CAS  PubMed  Google Scholar 

  22. Wang R, Zhong B, Liu Y, et al. Association between alpha-adducin gene polymorphism (Gly460Trp) and genetic predisposition to salt sensitivity: a meta-analysis. J Appl Genet. 2010;51(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  23. Liu K, Liu Y, Liu J, et al. α-adducin Gly460Trp polymorphism and essential hypertension risk in Chinese: a meta-analysis. Hypertens Res. 2011;34(3):389–99. doi:10.1038/hr.2010.252.

    Article  CAS  PubMed  Google Scholar 

  24. Yamada Y, Ando F, Shimokata H. Association of gene polymorphisms with blood pressure and the prevalence of hypertension in community-dwelling Japanese individuals. Int J Mol Med. 2007;19(4):675–83.

    CAS  PubMed  Google Scholar 

  25. Takeuchi F, Yamamoto K, Katsuya T, et al. Reevaluation of the association of seven candidate genes with blood pressure and hypertension: a replication study and meta-analysis with a larger sample size. Hypertens Res. 2012;35(8):825–31. doi:10.1038/hr.2012.43.

    Article  CAS  PubMed  Google Scholar 

  26. Wang WY, Zee RY, Morris BJ. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin Genet. 1997;51(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  27. Kainulainen K, Perola M, Terwilliger J, et al. Evidence for involvement of the type 1 angiotensin II receptor locus in essential hypertension. Hypertension. 1999;33(3):844–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bonnardeaux A, Davies E, Jeunemaitre X, et al. Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension. 1994;24(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang Z, Zhao W, Yu F, et al. Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Chin Med J (Engl). 2001;114(12):1249–51.

    CAS  Google Scholar 

  30. Ono K, Mannami T, Baba S, et al. Lack of association between angiotensin II type 1 receptor gene polymorphism and hypertension in Japanese. Hypertens Res. 2003;26(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  31. Takachi R, Ishihara J, Iwasaki M, et al. Validity of a self-administered food frequency questionnaire for middle-aged urban cancer screenees: comparison with 4-day weighed dietary records. J Epidemiol. 2011;21(6):447–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Keyzer W, Dofková M, Lillegaard IT, et al. Reporting accuracy of population dietary sodium intake using duplicate 24 h dietary recalls and a salt questionnaire. Br J Nutr. 2015;113(3):488–97. doi:10.1017/S0007114514003791.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Toyota Motor Co., Ltd., provided the annual health examination data as well as financial support for this study for the purpose of developing medicine and promoting the health of their employees. The authors also acknowledge Editage for providing editorial and publication supports, Ms. Yoko Kubo for data managing, and Ms. Michiyo Hiraoka for SNP typing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Ando.

Ethics declarations

Conflict of interest

Support for this work was provided by the Center of Innovation STREAM Program at the Nagoya University Institute of Innovation for Future Society, the government-led Comprehensive Special Zones for Local Revitalization project, and the Toyota Motor Co., Ltd., for the financial support. The Department of Nephrology, Nagoya University Graduate School of Medicine received research promotion grants from Astellas, Alexion, Otsuka, Kyowa Hakko Kirin, Daiichi Sankyo, Dainippon Sumitomo, Takeda, Torii, Pfizer, and Mochida. The Center for Advanced Medicine and Clinical Research, Nagoya University Hospital received a donation from Eisai Co., Ltd. Department of CKD Initiatives, Nagoya University Graduate School of Medicine received donation from MSD, Dainippon Sumitomo, Kyow Hakko Kirin, Kowa, Chugai, Boehringer Ingelheim, Nihon Medi-Physics Co., Ltd., and research promotion grants from Daiichi Sankyo, Takeda, Torii, Astellas, and Shionogi.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee at which the studies were conducted (IRB approval number 1089-4) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imaizumi, T., Ando, M., Nakatochi, M. et al. Association of interactions between dietary salt consumption and hypertension-susceptibility genetic polymorphisms with blood pressure among Japanese male workers. Clin Exp Nephrol 21, 457–464 (2017). https://doi.org/10.1007/s10157-016-1315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1315-3

Keywords

Navigation