Skip to main content

Advertisement

Log in

Stimulation of V1a receptor increases renal uric acid clearance via urate transporters: insight into pathogenesis of hypouricemia in SIADH

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Hypouricemia is pathognomonic in syndrome of inappropriate secretion of antidiuretic hormone (SIADH) but the underlying mechanism remains unclear. Based on the previous studies, we hypothesized that V1a receptor may play a principal role in inducing hypouricemia in SIADH and examined uric acid metabolism using a rat model.

Methods

Terlipressin (25 ng/h), a selective V1a agonist, was subcutaneously infused to 7-week-old male Wistar rats (n = 9). Control rats were infused with normal saline (n = 9). The rats were sacrificed to obtain kidney tissues 3 days after treatment. In addition to electrolyte metabolism, changes in expressions of the urate transporters including URAT1 (SLC22A12), GLUT9 (SLC2A9), ABCG2 and NPT1 (SLC17A1) were examined by western blotting and immunohistochemistry.

Results

In the terlipressin-treated rats, serum uric acid (UA) significantly decreased and the excretion of urinary UA significantly increased, resulting in marked increase in fractional excretion of UA. Although no change in the expression of URAT1, GLUT9 expression significantly decreased whereas the expressions of ABCG2 and NPT1 significantly increased in the terlipressin group. The results of immunohistochemistry corroborated with those of the western blotting. Aquaporin 2 expression did not change in the medulla, suggesting the independence of V2 receptor stimulation.

Conclusion

Stimulation of V1a receptor induces the downregulation of GLUT9, reabsorption urate transporter, together with the upregulation of ABCG2 and NPT1, secretion urate transporters, all changes of which clearly lead to increase in renal UA clearance. Hypouricemia seen in SIADH is attributable to V1a receptor stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beck LH. Hypouricemia in the syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1979;301(10):528–30.

    Article  CAS  PubMed  Google Scholar 

  2. Maesaka JK, Gupta S, Fishbane S. Cerebral salt-wasting syndrome: does it exist? Nephron. 1999;82(2):100–9.

    Article  CAS  PubMed  Google Scholar 

  3. Maesaka JK, Imbriano LJ, Ali NM, Ilamathi E. Is it cerebral or renal salt wasting? Kidney Int. 2009;76(9):934–8.

    Article  PubMed  Google Scholar 

  4. Fenske W, Maier SK, Blechschmidt A, Allolio B, Stork S. Utility and limitations of the traditional diagnostic approach to hyponatremia: a diagnostic study. Am J Med. 2010;123(7):652–7.

    Article  PubMed  Google Scholar 

  5. Dorhout Mees EJ, Blom van Assendelft P, Nieuwenhuis MG. Elevation of uric aicd clearance caused by inappropriate antidiuretic hormone secretion. Acta Med Scand. 1971;189(1–2):69–72.

    PubMed  Google Scholar 

  6. Prospert F, Soupart A, Brimioulle S, Decaux G. Evidence of defective tubular reabsorption and normal secretion of uric acid in the syndrome of inappropriate secretion of antidiuretic hormone. Nephron. 1993;64(2):189–92.

    Article  CAS  PubMed  Google Scholar 

  7. Decaux G, Namias B, Gulbis B, Soupart A. Evidence in hyponatremia related to inappropriate secretion of ADH that V1 receptor stimulation contributes to the increase in renal uric acid clearance. J Am Soc Nephrol. 1996;7(5):805–10.

    CAS  PubMed  Google Scholar 

  8. Wright AF, Rudan I, Hastie ND, Campbell H. A ‘complexity’ of urate transporters. Kidney Int. 2010;78(5):446–52.

    Article  CAS  PubMed  Google Scholar 

  9. Anzai N, Jutabha P, Amonpatumrat-Takahashi S, Sakurai H. Recent advances in renal urate transport: characterization of candidate transporters indicated by genome-wide association studies. Clin Exp Nephrol. 2012;16(1):89–95.

    Article  CAS  PubMed  Google Scholar 

  10. Sakurai H. Urate transporters in the genomic era. Curr Opin Nephrol Hypertens. 2013;22(5):545–50.

    Article  CAS  PubMed  Google Scholar 

  11. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH. Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem. 2004;279(16):16229–36.

    Article  CAS  PubMed  Google Scholar 

  12. Preitner F, Bonny O, Laverriere A, Rotman S, Firsov D, Da Costa A, et al. Glut9 is a major regulator of urate homeostasis and its genetic inactivation induces hyperuricosuria and urate nephropathy. Proc Natl Acad Sci USA. 2009;106(36):15501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  14. Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, et al. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout. Arthritis Rheumatol. 2015;67(1):281–7.

    Article  CAS  PubMed  Google Scholar 

  15. Yasuoka Y, Kobayashi M, Sato Y, Zhou M, Abe H, Okamoto H, et al. The intercalated cells of the mouse kidney OMCD(is) are the target of the vasopressin V1a receptor axis for urinary acidification. Clin Exp Nephrol. 2013;17(6):783–92.

    Article  CAS  PubMed  Google Scholar 

  16. Burnatowska-Hledin MA, Spielman WS. Vasopressin V1 receptors on the principal cells of the rabbit cortical collecting tubule. Stimulation of cytosolic free calcium and inositol phosphate production via coupling to a pertussis toxin substrate. J Clin Invest. 1989;83(1):84–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ando Y, Tabei K, Asano Y. Luminal vasopressin modulates transport in the rabbit cortical collecting duct. J Clin Invest. 1991;88(3):952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Terada Y, Tomita K, Nonoguchi H, Yang T, Marumo F. Different localization and regulation of two types of vasopressin receptor messenger RNA in microdissected rat nephron segments using reverse transcription polymerase chain reaction. J Clin Invest. 1993;92(5):2339–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tashima Y, Kohda Y, Nonoguchi H, Ikebe M, Machida K, Star RA, et al. Intranephron localization and regulation of the V1a vasopressin receptor during chronic metabolic acidosis and dehydration in rats. Pflugers Arch. 2001;442(5):652–61.

    Article  CAS  PubMed  Google Scholar 

  20. Carmosino M, Brooks HL, Cai Q, Davis LS, Opalenik S, Hao C, et al. Axial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct. Am J Physiol Renal Physiol. 2007;292(1):F351–60.

    Article  CAS  PubMed  Google Scholar 

  21. Jung KY, Endou H. A novel vasopressin receptor in rat early proximal tubule. Biochem Biophys Res Commun. 1991;180(1):131–7.

    Article  CAS  PubMed  Google Scholar 

  22. Birumachi J, Hiroyama M, Fujiwara Y, Aoyagi T, Sanbe A, Tanoue A. Impaired arginine-vasopressin-induced aldosterone release from adrenal gland cells in mice lacking the vasopressin V1A receptor. Eur J Pharmacol. 2007;566(1–3):226–30.

    Article  CAS  PubMed  Google Scholar 

  23. Aoyagi T, Izumi Y, Hiroyama M, Matsuzaki T, Yasuoka Y, Sanbe A, et al. Vasopressin regulates the renin-angiotensin-aldosterone system via V1a receptors in macula densa cells. Am J Physiol Renal Physiol. 2008;295(1):F100–7.

    Article  CAS  PubMed  Google Scholar 

  24. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A. Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev. 2012;92(4):1813–64.

    Article  CAS  PubMed  Google Scholar 

  25. Diamond H, Meisel A. Influence of volume expansion, serum sodium, and fractional excretion of sodium on urate excretion. Pflugers Arch. 1975;356(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  26. Maesaka JK. An expanded view of SIADH, hyponatremia and hypouricemia. Clin Nephrol. 1996;46(2):79–83.

    CAS  PubMed  Google Scholar 

  27. Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J, Nakanishi T, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the doctors in the Division of Nephrology, the Department of Internal Medicine, Teikyo University School of Medicine for their continued cooperation. We are especially indebted to Ms. Hiromi Yamaguchi and Ms. Miyuki Fukazawa for their excellent technical assistance. We also thank Dr. Makoto Hosoyamada, MD, PhD, Human Physiology and Pathology, Faculty of Pharma Sciences, Teikyo University, Tokyo. Japan, for discussing on the uric acid measurement and Dr. Hirotaka Matsuo MD, PhD, Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan, for discussing on the antibody for urate transporters. This study was supported in part by a Grant-in-Aid for Progressive Renal Diseases Research, Research on Rare and Intractable Disease, from the Ministry of Health, Labour and Welfare of Japan (to SU) and Gout Research Foundation (to SU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunya Uchida.

Ethics declarations

Conflicts of interest

The authors have declared that no conflict of interest exists.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, K., Tamura, Y., Kumagai, T. et al. Stimulation of V1a receptor increases renal uric acid clearance via urate transporters: insight into pathogenesis of hypouricemia in SIADH. Clin Exp Nephrol 20, 845–852 (2016). https://doi.org/10.1007/s10157-016-1248-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1248-x

Keywords

Navigation