Skip to main content
Log in

High-sensitivity C-reactive protein, apolipoproteins, and residual diuresis in chronic kidney disease patients undergoing hemodialysis

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Residual diuresis (RD) is the simplest method for measuring renal residual function in patients with chronic kidney disease (CKD). A reduction in RD is associated with intensification of the inflammatory process caused by uremia. However, little is known regarding the relation between RD and inflammatory markers in these patients. We verify possible associations among the hs-CRP, atherogenic factors, and RD, in patients with CKD undergoing hemodialysis.

Methods

This study enrolled 80 patients with CKD undergoing hemodialysis. Patients were stratified according to RD in anuric (RD−) group (n = 47) and non-anuric (RD+) group (n = 33). Urine volumes were collected in a 24 h period during the interdialytic period. Serum high-sensitivity C-reactive protein (hs-CRP), and apolipoprotein (Apo) A1 and B levels were measured after fasting for 12 h.

Results

Serum hs-CRP levels were higher in the RD− group than in the RD+ group (P = 0.015). In the total group, hs-CRP was significantly correlated with RD (r = − 0.25, P = 0.025) and Apo AI (r = − 0.25, P = 0.024). A greater proportion of patients had reduced plasma concentrations of Apo AI in the RD− group (31.9 %) compared with the RD+ group (9.1 %) (P = 0.014).

Conclusion

This study shows a relationship between RD and the hs-CRP in patients undergoing hemodialysis. Although the inflammatory state was verified in a large part of the CKD population, patients without RD had more elevated hs-CRP serum levels than those with RD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vilar E, Farrington K. Emerging importance of residual renal function in end-stage renal failure. Semin Dial. 2011;24(5):487–94.

    Article  PubMed  Google Scholar 

  2. Fukuda M, et al. Polynocturia in chronic kidney disease is related to natriuresis rather than to water diuresis. Nephrol Dial Transplant. 2006;21(8):2172–7.

    Article  PubMed  Google Scholar 

  3. Daugirdas JT, Greene T, Rocco MV, Kaysen GA, Depner TA, Levin NW, Chertow GM, Ornt DB, Raimann JG, Larive B, Kliger AS. Effect of frequent hemodialysis on residual kidney function. Kidney Int. 2013;83:949–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shafi T, et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the choices for Healthy Outcomes in Caring for End-Stage Renal Disease (CHOICE) Study. Am J Kidney Dis. 2010;56(2):348–58.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ng TG, Johnson DW, Hawley CM. Is it time to revisit residual renal function in haemodialysis? Nephrology. 2007;12:209–17.

    Article  PubMed  Google Scholar 

  6. Liao CT, Shiao CC, Huang JW, Hung KY, Chuang HF, Chen YM, et al. Predictors of faster decline of residual renal function in Taiwanese peritoneal dialysis patients. Perit Dial Int. 2008;28(Supplement 3):191–5.

    Google Scholar 

  7. Keller C, et al. Association of kidney function with inflammatory and procoagulant markers in a diverse cohort: a cross-sectional analysis from the Multi-Ethnic Study of Atherosclerosis (MESA). BMC Nephrol. 2008;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bazeley J, et al. C-reactive protein and prediction of 1-year mortality in prevalent hemodialysis patients. Clin J Am Soc Nephrol. 2011;6(10):2452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan UA, et al. Prevention of chronic kidney disease and subsequent effect on mortality: a systematic review and meta-analysis. PLoS One. 2013;8(8):e71784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74.

    Article  CAS  PubMed  Google Scholar 

  11. Kim HK, Chang SA, Choi EK, Kim YJ, Kim HS, Sohn DW, Oh BH, Lee MM, Park YB, Choi YS. Association between plasma lipids, and apolipoproteins and coronary artery disease: a cross-sectional study in a low-risk Korean population. Int J Cardiol. 2005;101(3):435–40.

    Article  PubMed  Google Scholar 

  12. Lanas F, et al. Risk factors for acute myocardial infarction in Latin America: the INTERHEART Latin American study. Circulation. 2007;115(9):1067–74.

    Article  PubMed  Google Scholar 

  13. Walldius G, Jungner I. Apolipoprotein B and apolipoprotein A-I: risk indicators of coronary heart disease and targets for lipid-modifying therapy. J Intern Med. 2004;255(2):188–205.

    Article  CAS  PubMed  Google Scholar 

  14. Steddon S, Ashman N, Chesser A, Cunningham J. Oxford handbook of nephrology and hypertension: the essential pratical guide for working with renal patients. USA: Oxford University Press; 2014. p. 74.

    Book  Google Scholar 

  15. Timby BK. Fundamental nursing skills and concepts. 9th ed. Philadelphia: Lippincott Williams & Wilkins; 2009. p. 707.

    Google Scholar 

  16. Lewandrowski KB, Lee-Lewandrowiski E. Clinical chemistry. In: McClatchey KD, editor. Clinical laboratory medicine. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 320.

    Google Scholar 

  17. Dominici R, Luraschi P, Franzini C. Measurement of C-reactive protein: two high sensitivity methods compared. J Clin Lab Anal. 2004;18:280–4.

    Article  CAS  PubMed  Google Scholar 

  18. Riley RS, Anderson FP. Basic principles of immunodiagnosis. In: McClatchey KD, editor. Clinical laboratory medicine. Philadelphia: Lippincott Williams & Wilkins; 2002. p. 1365.

    Google Scholar 

  19. Lind L, Vessby B, Sundstrom J. The apolipoprotein B/AI ratio and the metabolic syndrome independently predict risk for myocardial infarction in middle-aged men. Arterioscler Thromb Vasc Biol. 2006;26(2):406–10.

    Article  CAS  PubMed  Google Scholar 

  20. Penne EL, van der Weerd NC, Grooteman MP, Mazairac AH, et al. Role of residual renal function in phosphate control and anemia management in chronic hemodialysis patients. Clin J Am Soc Nephrol. 2011;6(2):281–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liao CT, Chen YM, Shiao CC, Hu FC, Huang JW, Kao TW, et al. Rate of decline of residual renal function is associated with all-cause mortality and technique failure in patients on long-term peritoneal dialysis. Nephrol Dial Transplant. 2009;24(9):2909–14.

    Article  PubMed  Google Scholar 

  22. Szeto CC, Kwan BC, Chow KM, Chung S, Yu V, Cheng MS et al (2014) Predictors of residual renal function decline in patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int (pdi-2013).

  23. Wang AYM, Woo J, Wang M, Sea MMM, Sanderson JE, Lui SF, Li PKT. Important differentiation of factors that predict outcome in peritoneal dialysis patients with different degrees of residual renal function. Nephrol Dial Transplant. 2005;20(2):396–403.

    Article  PubMed  Google Scholar 

  24. Tbahriti HF, Meknassi D, Moussaoui R, Messaoudi A, Zemour L, Kaddous A, Bouchenak M, Mekki K. Inflammatory status in chronic renal failure: the role of homocysteinemia and proinflammatory cytokines. World J Nephrol. 2013;2(2):31–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Korevaar JC, et al. Effect of an increase in C-reactive protein level during a hemodialysis session on mortality. J Am Soc Nephrol. 2004;15(11):2916–22.

    Article  CAS  PubMed  Google Scholar 

  26. Koulouridis E, et al. Homocysteine and C-reactive protein levels in haemodialysis patients. Int Urol Nephrol. 2001;33(2):207–15.

    Article  CAS  PubMed  Google Scholar 

  27. Park CW, et al. Increased C-reactive protein following hemodialysis predicts cardiac hypertrophy in chronic hemodialysis patients. Am J Kidney Dis. 2002;40(6):1230–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lamprea-Montealegre JA, et al. CKD, plasma lipids, and common carotid intima-media thickness: results from the multi-ethnic study of atherosclerosis. Clin J Am Soc Nephrol. 2012;7(11):1777–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan DC, Watts GF. Apolipoproteins as markers and managers of coronary risk. QJM. 2006;99(5):277–87.

    Article  CAS  PubMed  Google Scholar 

  30. Attman PO, Samuelsson O, Alaupovic P. The effect of decreasing renal function on lipoprotein profiles. Nephrol Dial Transplant. 2011;26(8):2572–5.

    Article  CAS  PubMed  Google Scholar 

  31. Cerezo I, Fernández N, Romero B, Fernández-Carbonero E, Gallego RH, et al. Prognostic value of apolipoproteins A and B in the evolution of patients with chronic kidney disease previous to dialysis. Nefrología. 2009;29(6):540–7.

    CAS  PubMed  Google Scholar 

  32. Chmielewski M, et al. Temporal discrepancies in the association between the apoB/apoA-I ratio and mortality in incident dialysis patients. J Intern Med. 2009;265(6):708–16.

    Article  CAS  PubMed  Google Scholar 

  33. Kon V, Ikizler TA, Fazio S. Importance of high-density lipoprotein quality: evidence from chronic kidney disease. Curr Opin Nephrol Hypertens. 2013;22(3):259–65.

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez AI, et al. Lipoprotein alterations in hemodialysis: differences between diabetic and nondiabetic patients. Metabolism. 2003;52(1):116–21.

    Article  CAS  PubMed  Google Scholar 

  35. Menon V, et al. C-reactive protein and albumin as predictors of all-cause and cardiovascular mortality in chronic kidney disease. Kidney Int. 2005;68(2):766–72.

    Article  CAS  PubMed  Google Scholar 

  36. Stenvinkel P, Barany P, Chung SH, Lindholm B, Heimbürger O. A comparative analysis of nutritional parameters as predictors of outcome in male and female ESRD patients. Nephrol Dial Transplant. 2002;17(7):1266–74.

    Article  PubMed  Google Scholar 

  37. Panichi V, Maggiore U, Taccola D, Migliori M, Rizza GM, Consani C, et al. Interleukin-6 is a stronger predictor of total and cardiovascular mortality than C-reactive protein in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1154–60.

    Article  CAS  PubMed  Google Scholar 

  38. Stenvinkel P, Lindholm B. C-reactive protein in end-stage renal disease: Are there reasons to measure it? Blood Purif. 2005;23:72–8.

    Article  CAS  PubMed  Google Scholar 

  39. Abeywardena MY, Leifert WR, Warnes KE, Varghese JN, Head RJ. Cardiovascular Biology of Interleukin-6. Curr Pharm Des. 2009;15(15):1809–21.

    Article  CAS  PubMed  Google Scholar 

  40. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Therapy. 2006;8(Suppl 2):3.

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the staff of Nefroclínica de Uberlandia for collaboration and the Mathematics Faculty of Federal University of Uberlândia for help with biostatistics. We especially thank all of the patients who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Rodrigues Ferreira Filho.

Ethics declarations

Conflict of interest

None declared.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borges, D.L., Lemes, H.P., de Castro Ferreira, V. et al. High-sensitivity C-reactive protein, apolipoproteins, and residual diuresis in chronic kidney disease patients undergoing hemodialysis. Clin Exp Nephrol 20, 943–950 (2016). https://doi.org/10.1007/s10157-016-1230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-016-1230-7

Keywords

Navigation