Skip to main content
Log in

Nutritional treatment in chronic kidney disease: the concept of nephroprotection

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Low-protein diets have been advocated for many decades as the cornerstone in the treatment of chronic kidney disease. Initially, the low intake of protein was used to reduce uremic symptoms; thereafter, albeit controversial, evidences suggested that dietary protein restriction can also slow the rate of progression of renal failure and the time until end-stage renal disease. This reviews focuses on the dietary factors and their influence on the loss of renal function and on the evidences in the literature supporting a nephroprotective role of the low-protein diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giovannetti S, Maggiore Q. A low-nitrogen diet with proteins of high biological value for severe chronic uremia. Lancet. 1964;6:1001–3.

    Google Scholar 

  2. Hostetter TH, Olson JL, Rennke HG, et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981;241:F85–93.

    CAS  PubMed  Google Scholar 

  3. Cianciaruso B, Pota A, Pisani A, et al. Metabolic effects of two low protein diets in chronic kidney disease stage 4–5—a randomized controlled trial. Nephrol Dial Transplant. 2008;23(2):636–44.

    Article  CAS  PubMed  Google Scholar 

  4. Weir MR, Fink JC. Salt intake and progression of chronic kidney disease: an overlooked modifiable exposure? a commentary. Am J Kidney Dis. 2005;45:176–88.

    Article  PubMed  Google Scholar 

  5. Wilcox CS. Dietary salt intake for patients with hypertension or kidney disease. In: Mitch WE, Ikizler TA, editors. Handbook of nutrition and the Kidney. Philadelphia: Lippincott, Williams and Wilkins; 2009.

    Google Scholar 

  6. Slagman MCJ, Waanders F, Hemmelder MH, et al. Moderate dietary salt restriction added to angiotensin-converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomized controlled trial. BMJ. 2011;343:d4366.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake and the risk of gout in men. N Engl J Med. 2004;350:1093–103.

    Article  CAS  PubMed  Google Scholar 

  8. Johnson RJ, Segal MS, Srinivas T, Ejaz A, Mu W, et al. Essential hypertension, progressive renal disease, and uric acid: a pathogenetic link? J Am Soc Nephrol. 2005;16:1909–19.

    Article  CAS  PubMed  Google Scholar 

  9. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ, Kang D-H, et al. Hypothesis: uric acid, nephron number and the pathogenesis of essential hypertension. Kidney Int. 2004;2004(66):281–7.

    Article  Google Scholar 

  10. Maschio G, Oldrizzi L, Tessitore N, D’Angelo A, Valvo E, et al. Early dietary protein and phosphorus restriction is effective in delaying progression of chronic renal failure. Kidney Int. 1983;24:272–6.

    Google Scholar 

  11. Lau K. Phosphate excess and progressive renal failure: the precipitation-calcification hypothesis. Kidney Int. 1989;36:918–37.

    Article  CAS  PubMed  Google Scholar 

  12. Vanholder R, Massy Z, Argiles A, Spasovski G, Verbeke F, et al. Chronic kidney disease a cause of cardiovascular morbidity and mortality. Nephrol Dial Transplant. 2005;20:1048–56.

    Article  CAS  PubMed  Google Scholar 

  13. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular schlerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med. 1982;307:652–9.

    Article  CAS  PubMed  Google Scholar 

  14. Brenner BM. Nephron adaptation to renal injury or ablation. Am J Physiol. 1985;249:F324–37.

    CAS  PubMed  Google Scholar 

  15. Hostetter TH, Meyer TW, Rennke HG, Brenner BM. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int. 1986;30:509–17.

    Article  CAS  PubMed  Google Scholar 

  16. Nath KA, Kren SM, Hostetter TH. Dietary protein restriction in established renal injury in the rat. Selective role of glomerular capillary pressure in progressive glomerular dysfunction. J Clin Invest. 1986;78:1199–205.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ruggenenti P, Perna A, Mosconi L, et al. Urinary protein excretion rate is the best independent predictor of ESRF in non diabetic proteinuric chronic nephropathies. “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int. 1998;53:1209–16.

    Article  CAS  PubMed  Google Scholar 

  18. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int. 1996;49:1774–7.

    Article  CAS  PubMed  Google Scholar 

  19. Franch HA, Mitch WE. Catabolism in uremia: the impact of metabolic acidosis. J Am Soc Nephrol. 1998;9:S78–81.

    CAS  PubMed  Google Scholar 

  20. Hostetter TH. Human renal response to a meat meal. Am J Physiol. 1986;19:F613–8.

    Google Scholar 

  21. Klahr S, Levey AS, Beck GJ, et al. The effects of dietary protein restriction and blood pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994;330:877–84.

    Article  CAS  PubMed  Google Scholar 

  22. Wesson DE, Simoni J. Increased tissue acid mediates a progressive decline in the glomerular filtration rate of animals with reduced nephron mass. Kidney Int. 2009;75:929–35.

    Article  CAS  PubMed  Google Scholar 

  23. Kaysen GA, Gambertoglio J, Jimenez I, et al. Effect of dietary protein intake on albumin homeostasis in nephritic patients. Kidney Int. 1986;29:572–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hostetter TH, Ibrahim HN. Aldosterone in chronic kidney and cardiac disease. J Am Soc Nephrol. 2003;14(9):2395–401.

    Article  PubMed  Google Scholar 

  25. Franch HA. Kidney growth during catabolic illness: what it does not destroy makes it grow stronger. J Ren Nutr. 2007;17:167–72.

    Article  PubMed  Google Scholar 

  26. Wilmer WA, Rovin BH, Hebert CJ, Rao SV, Kumor K, Hebert LA. Management of glomerular proteinuria: a commentary. J Am Soc Nephrol. 2003;14:3217–32.

    Article  CAS  PubMed  Google Scholar 

  27. Niwa T, Tsukushi S, Ise M, et al. Indoxyl sulfate and progression of renal failure—effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner Electrolyte Metab. 1997;23:179–84.

    CAS  PubMed  Google Scholar 

  28. Malvy D, Maingourd C, Pengloan J, et al. Effects of severe protein restriction with ketoanalogues in advanced renal failure. J Am Coll Nutr. 1999;8:481–6.

    Article  Google Scholar 

  29. Zoccali C, Ruggenenti P, Perna A, et al. REIN Study Group. Phosphate may promote CKD progression and attenuate renoprotective effect of ACE inhibition. J Am Soc Nephrol. 2011;22:1923–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bernard S, Fouque D, Laville M, Zech P. Effects of low-protein diet supplemented with ketoacids on plasma lipids in adult chronic renal failure. Miner Electrolyte Metab. 1996;22:143–6.

    CAS  PubMed  Google Scholar 

  31. Fouque D, Aparicio M. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nat Clin Pract Npehrol. 2007;3(7):383–92.

    Article  CAS  Google Scholar 

  32. Mitch WE, Remuzzi G. Diets of patients with chronic kidney disease, still worth prescribing. J Am Soc Nephrol. 2004;15:234–7.

    Article  PubMed  Google Scholar 

  33. Bellizzi V, Di Iorio BR, De Nicola L, et al. Very low protein diet supplemented with ketoanalogs improves blood pressure control in chronic kidney disease. Kidney Int. 2007;71(3):245–51.

    Article  CAS  PubMed  Google Scholar 

  34. Gansevoort RT, et al. Additive antiproteinuric effect of ACE inhibition and a low protein diet in human renal disease. Nephrol Dial Transplant. 1995;10:497–504.

    CAS  PubMed  Google Scholar 

  35. Mitch WE. Requirements for protein, calories, and fat in the predialysis patients. In: Mitch WE, Klahr S, editors. Handbook of Nutrition and the kidney. Philadelphia : Lippincott Williams and Wilkins; 2002. p. 144–65.

    Google Scholar 

  36. Chanutin A, Ferris EB. Experimental renal insufficiency produced by partial nephrectomy I. Control diet. Arch Int Med. 1932;49:767–87.

    Article  CAS  Google Scholar 

  37. Chanutin A, Ludewig S. Experimental renal insufficiency produced by partial nephrectomy. V. Diets containing whole dried meat. Arch Int Med. 1936;58:60–80.

    Article  CAS  Google Scholar 

  38. Maschio G, Oldrizzi L, Tessitore N, D’Angelo A, Valvo L, et al. Effects of dietary protein and phosphorus restriction on the progression of early renal failure. Kidney Int. 1982;22:371–6.

    Article  CAS  PubMed  Google Scholar 

  39. Mitch WE, Walser M, Steinman TL, Hill S, Zeger S, Tungsanga K. The effect of keto acid–amino acid supplement to a restricted diet on the progression of chronic renal failure. N Engl J Med. 1984;311:623–9.

    Article  CAS  PubMed  Google Scholar 

  40. Oldrizzi L, Rugiu C, Maschio G. The Verona experience on the effect of diet on progression of renal failure. Kidney Int. 1989;36:S103–5.

    Google Scholar 

  41. Rosman JB, Ter Wee PM. Relationship between proteinuria and response to low protein diets early in chronic renal failure. Blood Purif. 1989;7(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  42. Ihle BU, Becker GJ, Whitworth JA, et al. The effect of protein restriction on the progression of renal insufficiency. N Engl J Med. 1989;321:1773–7.

    Article  CAS  PubMed  Google Scholar 

  43. Fahal IH. Uraemic sarcopenia: etiology and implications. Nephrol Dial Transplant. 2013;. doi:10.1093/ndt/gft070.

    PubMed  Google Scholar 

  44. Klim JK, Choi SR, Choi MJ, et al. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin Nutr. 2014;33(1):64–8.

    Article  Google Scholar 

  45. Williams PS, Stevens ME, Fass G, et al. Failure of dietary protein and phosphate restriction to retard the rate of progression of chronic renal failure: a prospective, randomized, controlled trial. Q J Med. 1991;81:837–55.

    CAS  PubMed  Google Scholar 

  46. Locatelli F, Alberti D, Graziani G, et al. Factors affecting chronic renal failure progression: results from a multicentre trial. The Northern Italian Cooperative Study Group. Miner Electrolyte Metab. 1992;18(2–5):295–302.

    CAS  PubMed  Google Scholar 

  47. Levey AS, Greene T, Sarnak MJ, et al. Effect of dietary protein restriction on the progression of kidney disease: long-term follow-up of the modification of diet in renal disease (MDRD) study. Am J Kidney Dis. 2006;48:879–88.

    Article  CAS  PubMed  Google Scholar 

  48. Fouque D. Chapter 9. In: Mitch WE, Ikizler TA, editors. Nutritional strategies in progressive renal insufficiency. Philadelphia: Lippincott Williams & Wilkins; 2009.

    Google Scholar 

  49. Novak JE, Inrig JK, Patel UD, Califf RM, Szczech LA. Negative trials in nephrology: what can we learn? Kidney Int. 2008;74:1121–7.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Menon V, Kopple JD, Wang X, et al. Effect of a very low protein diet on outcomes: long-term follow-up of the modification of diet in renal disease (MDRD) study. Am J Kidney Dis. 2009;53(2):208–17.

    Article  CAS  PubMed  Google Scholar 

  51. Di Iorio B, Minutolo R, De Nicola L, et al. Supplemented very low protein diet ameliorates responsiveness to erythropoietin in chronic renal failure. Kidney Int. 2003;64:1822–8.

    Article  PubMed  Google Scholar 

  52. Brunori G, Viola BF, Parrinello G, et al. Efficacy and safety of a very low protein diet when postponing dialysis in the elderly: a prospective randomized multicenter controller study. Am J Kidney Dis. 2007;49:569–80.

    Article  CAS  PubMed  Google Scholar 

  53. Cianciaruso B, Pota A, Bellizzi V, et al. Effects of low- versus moderate- protein diet on progression of CKD: follow up of a randomized controller trial. Am J Kidney Dis. 2009;54(6):1052–61.

    Article  CAS  PubMed  Google Scholar 

  54. Bellizzi V, Chiodini P, Cupisti A, et al. Very low-protein diet plus ketoacid in chronic kidney disease and risk of death during end-stage renal disease: an historical, cohort, controlled study. Nephrol Dial Transplant. 2014;29:1–7.

    Article  Google Scholar 

  55. Fouque D, Wang P, Laville M, et al. Low protein diet delay end-stage renal disease, in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant. 2000;15:1986–92.

    Article  CAS  PubMed  Google Scholar 

  56. Kasiske BL, Lakatua JD, Ma JZ, et al. A meta-analysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 2006;2:CD001892.

    Google Scholar 

  57. Fouque D, Laville M. Low protein diets for chronic kidney disease in non-diabetic adults. Cochrane Database Syst Rev. 2009;8:CD001892.

    Google Scholar 

  58. Fouque D, Wang P, Laville M, Boissel JP. Low protein diets for chronic renal failure in non diabetic adults. Cochrane Database Syst Rev. 2001;3:CD001892 Updated in: Cochrane Database Syst Rev, 2006; CD001892.

    Google Scholar 

  59. Kasiske BL, Lakatua JD, Ma JZ, Louis TA. A meta-anaysis of the effects of dietary protein restriction on the rate of decline in renal function. Am J Kidney Dis. 1998;31:959–61.

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Riccio.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riccio, E., Di Nuzzi, A. & Pisani, A. Nutritional treatment in chronic kidney disease: the concept of nephroprotection. Clin Exp Nephrol 19, 161–167 (2015). https://doi.org/10.1007/s10157-014-1041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-014-1041-7

Keywords

Navigation