Skip to main content

Advertisement

Log in

Chapter 1: Evaluation of kidney function in patients undergoing anticancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022

  • Special Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

The prevalence of CKD may be higher in patients with cancer than in those without due to the addition of cancer-specific risk factors to those already present for CKD. In this review, we describe the evaluation of kidney function in patients undergoing anticancer drug therapy. When anticancer drug therapy is administered, kidney function is evaluated to (1) set the dose of renally excretable drugs, (2) detect kidney disease associated with the cancer and its treatment, and (3) obtain baseline values for long-term monitoring. Owing to some requirements for use in clinical practice, a GFR estimation method such as the Cockcroft–Gault, MDRD, CKD-EPI, and the Japanese Society of Nephrology’s GFR estimation formula has been developed that is simple, inexpensive, and provides rapid results. However, an important clinical question is whether they can be used as a method of GFR evaluation in patients with cancer. When designing a drug dosing regimen in consideration of kidney function, it is important to make a comprehensive judgment, recognizing that there are limitations regardless of which estimation formula is used or if GFR is directly measured. Although CTCAEs are commonly used as criteria for evaluating kidney disease-related adverse events that occur during anticancer drug therapy, a specialized approach using KDIGO criteria or other criteria is required when nephrologists intervene in treatment. Each drug is associated with the different disorders related to the kidney. And various risk factors for kidney disease associated with each anticancer drug therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Japanese Society of Nephrology (2018) Evidence-based Clinical Practice Guideline for CKD 2018, Tokyo-igakusha. https://cdn.jsn.or.jp/data/CKD2018.pdf

  2. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733

  3. Rosner MH, Perazella MA (2017) Acute kidney injury in patients with cancer. N Engl J Med 376:1770–1781

    Article  CAS  PubMed  Google Scholar 

  4. Chawla LS, Eggers PW, Star RA et al (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66

    Article  PubMed  PubMed Central  Google Scholar 

  5. Launay-Vacher V, Oudard S, Janus N et al (2007) Prevalence of renal insufficiency in cancer patients and implications for anticancer drug management: the renal insufficiency and anticancer medications (IRMA) study. Cancer 110:1376–1384

    Article  CAS  PubMed  Google Scholar 

  6. Lane BR, Demirjian S, Derweesh IH et al (2015) Survival and Functional stability in chronic kidney disease due to surgical removal of nephrons: importance of the new baseline glomerular filtration rate. Eur Urol 68:996–1003

    Article  PubMed  Google Scholar 

  7. Nakamura Y, Tsuchiya K, Nitta K et al (2011) Prevalence of anemia and chronic kidney disease in cancer patients: clinical significance for 1-year mortality. Jpn J Nephrol 53:38–45 (Japanese)

    Google Scholar 

  8. Launay-Vacher V (2010) Epidemiology of chronic kidney disease in cancer patients: lessons from the IRMA study group. Semin Nephrol 30:548–556

    Article  PubMed  Google Scholar 

  9. Torres da Costa ESV, Costalonga EC, Coelho FO et al (2018) Assessment of kidney function in patients with cancer. Adv Chronic Kidney Dis 25:49–56

    Article  Google Scholar 

  10. Janus N, Launay-Vacher V, Byloos E et al (2010) Cancer and renal insufficiency results of the BIRMA study. Br J Cancer 103:1815–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lien YH, Lai LW (2011) Pathogenesis, diagnosis and management of paraneoplastic glomerulonephritis. Nat Rev Nephrol 7:85–95

    Article  CAS  PubMed  Google Scholar 

  12. Wada T, Ishimoto T, Nakaya I et al (2021) A digest of the evidence-based clinical practice guideline for nephrotic syndrome 2020. Clin Exp Nephrol 25:1277–1285

    Article  PubMed  Google Scholar 

  13. Heher EC, Rennke HG, Laubach JP et al (2013) Kidney disease and multiple myeloma. Clin J Am Soc Nephrol 8:2007–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leppert JT, Lamberts RW, Thomas IC et al (2018) Incident CKD after radical or partial nephrectomy. J Am Soc Nephrol 29:207–216

    Article  PubMed  Google Scholar 

  15. Ohira S, Abe K, Nagayama M et al (1991) Tumor markers in hemodialysis patients. J Jpn Soc Dial Ther 24:475–483 (Japanese)

    Article  Google Scholar 

  16. Hanafusa N, Tsuruya K, Komaba H (2019) Toseki Kanja No Kensa Chi No Yomikata, 4th edn. Nihon Medical Center (Japanese)

    Google Scholar 

  17. Bellizzi V, de Nicola L, Ames P et al (1997) Fetal proteins and chronic treatment with low-dose erythropoietin. J Lab Clin Med 129:193–199

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Li HY, Zhou Q et al (2016) Renal function and all-cause mortality risk among cancer patients. Medicine (Baltimore) 95:e3728

    Article  PubMed  Google Scholar 

  19. Ishii T, Fujimaru T, Nakano E et al (2020) Association between chronic kidney disease and mortality in stage IV cancer. Int J Clin Oncol 25:1587–1595

    Article  PubMed  Google Scholar 

  20. Chen DP, Davis BR, Simpson LM et al (2017) Association between chronic kidney disease and cancer mortality: a report from the ALLHAT. Clin Nephrol 87(2017):11–20

    Article  PubMed  Google Scholar 

  21. Kang E, Park M, Park PG et al (2019) Acute kidney injury predicts all-cause mortality in patients with cancer. Cancer Med 8:2740–2750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Canet E, Zafrani L, Lambert J et al (2013) Acute kidney injury in patients with newly diagnosed high-grade hematological malignancies: impact on remission and survival. PLoS ONE 8:e55870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Funakoshi T, Horimatsu T, Nakamura M et al (2018) Chemotherapy in cancer patients undergoing haemodialysis: a nationwide study in Japan. ESMO Open 3:e000301

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lowrance WT, Ordoñez J, Udaltsova N et al (2014) CKD and the risk of incident cancer. J Am Soc Nephrol 25:2327–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Go AS, Chertow GM, Fan D et al (2004) Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351:1296–1305

    Article  CAS  PubMed  Google Scholar 

  26. Rosner MH, Jhaveri KD, McMahon BA et al (2021) Onconephrology: the intersections between the kidney and cancer. CA Cancer J Clin 71:47–77

    Article  PubMed  Google Scholar 

  27. Hoxha E, Wiech T, Stahl PR et al (2016) A mechanism for cancer-associated membranous nephropathy. N Engl J Med 374:1995–1996

    Article  PubMed  Google Scholar 

  28. Leeaphorn N, Kue APP, Thamcharoen N et al (2014) Prevalence of cancer in membranous nephropathy: a systematic review and meta-analysis of observational studies. Am J Nephrol 40:29–35

    Article  PubMed  Google Scholar 

  29. Yokoyama H, Taguchi T, Sugiyama H et al (2012) Membranous nephropathy in Japan: analysis of the Japan Renal Biopsy Registry (J-RBR). Clin Exp Nephrol 16:557–563

    Article  PubMed  Google Scholar 

  30. Xu H, Matsushita K, Su G et al (2019) Estimated glomerular filtration rate and the risk of cancer. Clin J Am Soc Nephrol 14:530–539

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lawrence HJ, Simone J, Aur RJ (1975) Cyclophosphamide-induced hemorrhagic cystitis in children with leukemia. Cancer 36:1572–1576

    Article  CAS  PubMed  Google Scholar 

  32. Chao CT, Wang CY, Lai CF et al (2014) Dialysis-requiring acute kidney injury increases risk of long-term malignancy: a population-based study. J Cancer Res Clin Oncol 140:613–621

    Article  CAS  PubMed  Google Scholar 

  33. Maisonneuve P, Agodoa L, Gellert R et al (1999) Cancer in patients on dialysis for end-stage renal disease: an international collaborative study. Lancet 354:93–99

    Article  CAS  PubMed  Google Scholar 

  34. Butler AM, Olshan AF, Kshirsagar AV et al (2015) Cancer incidence among US Medicare ESRD patients receiving hemodialysis, 1996–2009. Am J Kidney Dis 65:763–772

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaidu K, Tanaka Y, Tokui N (2013) The relationship between hemodialysis patients and cancer. Diagn Treat 101:1071–1076 (Japanese)

    Google Scholar 

  36. Lee JE, Han SH, Cho BC et al (2009) Cancer in patients on chronic dialysis in Korea. J Korean Med Sci 24(Suppl):S95-s101

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chien CC, Han MM, Chiu YH et al (2017) Epidemiology of cancer in end-stage renal disease dialysis patients: a national cohort study in Taiwan. J Cancer 8:9–18

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shlipak MG, Fried LF, Crump C et al (2003) Elevations of inflammatory and procoagulant biomarkers in elderly persons with renal insufficiency. Circulation 107:87–92

    Article  CAS  PubMed  Google Scholar 

  39. Muntner P, Hamm LL, Kusek JW et al (2004) The prevalence of nontraditional risk factors for coronary heart disease in patients with chronic kidney disease. Ann Intern Med 140:9–17

    Article  PubMed  Google Scholar 

  40. Grulich AE, van Leeuwen MT, Falster MO et al (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370:59–67

    Article  PubMed  Google Scholar 

  41. de Fijter JW (2017) Cancer and mTOR inhibitors in transplant recipients. Transplantation 101:45–55

    Article  PubMed  Google Scholar 

  42. Farrugia D, Mahboob S, Cheshire J et al (2014) Malignancy-related mortality following kidney transplantation is common. Kidney Int 85:1395–1403

    Article  PubMed  Google Scholar 

  43. Ying T, Shi B, Kelly PJ et al (2020) Death after kidney transplantation: an analysis by era and time post-transplant. J Am Soc Nephrol 31:2887–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Engels EA, Pfeiffer RM, Fraumeni JF Jr et al (2011) Spectrum of cancer risk among US solid organ transplant recipients. JAMA 306:1891–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imamura R, Nakazawa S, Yamanaka K et al (2021) Cumulative cancer incidence and mortality after kidney transplantation in Japan: a long-term multicenter cohort study. Cancer Med 10:2205–2215

    Article  CAS  PubMed  Google Scholar 

  46. Imao T, Ichimaru N, Takahara S et al (2007) Risk factors for malignancy in Japanese renal transplant recipients. Cancer 109:2109–2115

    Article  PubMed  Google Scholar 

  47. Eccher A, Girolami I, Motter JD et al (2020) Donor-transmitted cancer in kidney transplant recipients: a systematic review. J Nephrol 33:1321–1332

    Article  PubMed  PubMed Central  Google Scholar 

  48. Noone AM, Pfeiffer RM, Dorgan JF et al (2019) Cancer-attributable mortality among solid organ transplant recipients in the United States: 1987 through 2014. Cancer 125:2647–2655

    Article  PubMed  Google Scholar 

  49. Yanik EL, Siddiqui K, Engels EA (2015) Sirolimus effects on cancer incidence after kidney transplantation: a meta-analysis. Cancer Med 4:1448–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Knoll GA, Kokolo MB, Mallick R et al (2014) Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ 349:g6679

    Article  PubMed  PubMed Central  Google Scholar 

  51. Budde K, Lehner F, Sommerer C et al (2015) Five-year outcomes in kidney transplant patients converted from cyclosporine to everolimus: the randomized ZEUS study. Am J Transplant 15:119–128

    Article  CAS  PubMed  Google Scholar 

  52. Hahn D, Hodson EM, Hamiwka LA et al (2019) Target of rapamycin inhibitors (TOR-I; sirolimus and everolimus) for primary immunosuppression in kidney transplant recipients. Cochrane Database Syst Rev 12:CD004290

    PubMed  Google Scholar 

  53. Webster AC, Lee VW, Chapman JR et al (2006) Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation 81:1234–1248

    Article  CAS  PubMed  Google Scholar 

  54. Malyszko J, Lee MW, Capasso G et al (2020) How to assess kidney function in oncology patients. Kidney Int 97:894–903

    Article  CAS  PubMed  Google Scholar 

  55. Casal MA, Nolin TD, Beumer JH (2019) Estimation of kidney function in oncology: implications for anticancer drug selection and dosing. Clin J Am Soc Nephrol 14:587–595

    Article  PubMed  PubMed Central  Google Scholar 

  56. Capasso A, Benigni A, Capitanio U et al (2019) Summary of the international conference on onco-nephrology: an emerging field in medicine. Kidney Int 96:555–567

    Article  PubMed  Google Scholar 

  57. McMahon BA, Rosner MH (2020) GFR measurement and chemotherapy dosing in patients with kidney disease and cancer. Kidney360 1:141–150

    Article  PubMed  PubMed Central  Google Scholar 

  58. Krens SD, Lassche G, Jansman FGA et al (2019) Dose recommendations for anticancer drugs in patients with renal or hepatic impairment. Lancet Oncol 20:e200–e207

    Article  CAS  PubMed  Google Scholar 

  59. Okuda Y, Hamada R, Uemura O et al (2021) Mean of creatinine clearance and urea clearance examined over 1 h estimates glomerular filtration rate accurately and precisely in children. Nephrology (Carlton) 26:763–771

    Article  CAS  PubMed  Google Scholar 

  60. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  61. Tattersall J, Dekker F, Heimbürger O et al (2011) When to start dialysis: updated guidance following publication of the Initiating Dialysis Early and Late (IDEAL) study. Nephrol Dial Transplant 26:2082–2086

    Article  PubMed  Google Scholar 

  62. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  63. Levey AS, Coresh J, Greene T et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  64. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  65. Killeen AA, Ashwood ER, Ventura CB et al (2013) Recent trends in performance and current state of creatinine assays. Arch Pathol Lab Med 137:496–502

    Article  CAS  PubMed  Google Scholar 

  66. Matsuo S, Imai E, Horio M et al (2009) Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53:982–992

    Article  CAS  PubMed  Google Scholar 

  67. Horio M (2012) Chronic kidney disease (CKD) recent progress. Topics: IV. assessment of renal function. J Jpn Soc Internal Med 101:1259–1265

    Article  CAS  Google Scholar 

  68. Inker LA, Schmid CH, Tighiouart H et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hudson JQ, Nolin TD (2018) Pragmatic use of kidney function estimates for drug dosing: the tide is turning. Adv Chronic Kidney Dis 25:14–20

    Article  PubMed  Google Scholar 

  70. Funakoshi Y, Fujiwara Y, Kiyota N et al (2016) Validity of new methods to evaluate renal function in cancer patients treated with cisplatin. Cancer Chemother Pharmacol 77:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Funakoshi Y, Fujiwara Y, Kiyota N et al (2013) Prediction of glomerular filtration rate in cancer patients by an equation for Japanese estimated glomerular filtration rate. Jpn J Clin Oncol 43:271–277

    Article  PubMed  Google Scholar 

  72. Shibata K, Yasuda Y, Kobayashi R et al (2015) Renal function evaluation in patients with cancer who were scheduled to receive carboplatin or S-1. Clin Exp Nephrol 19:1107–1113

    Article  CAS  PubMed  Google Scholar 

  73. Kos J, Werle B, Lah T et al (2000) Cysteine proteinases and their inhibitors in extracellular fluids: markers for diagnosis and prognosis in cancer. Int J Biol Mark 15:84–89

    Article  CAS  Google Scholar 

  74. Rowe C et al (2019) on behalf of the eGFR-C Study Group. Biological variation of measured and estimated glomerular filtration rate in patients with chronic kidney disease Kidney International 96(2):429–435. https://doi.org/10.1016/j.kint.2019.02.021

    Article  PubMed  Google Scholar 

  75. Du Bois D, Du Bois EF (1916) Clinical calorimetry: tenth paper a formula to estimate the approximate surface area if height and weight be known. Arch Internal Med XVII:863–871

    Article  Google Scholar 

  76. (2012) Clinical practice Guidebook for Diagnosis and Treatment of Chronic Kidney Diasease 2012. Tokyo-igakusha [Japanese]

  77. Horie S, Oya M, Nangaku M et al (2018) Guidelines for treatment of renal injury during cancer chemotherapy 2016. Clin Exp Nephrol 22:210–244

    Article  PubMed  Google Scholar 

  78. Launay-Vacher V, Spano JP, Janus N et al (2009) Renal insufficiency and anticancer drugs in elderly cancer patients: a subgroup analysis of the IRMA study. Crit Rev Oncol Hematol 70:124–133

    Article  PubMed  Google Scholar 

  79. Mehta RL, Awdishu L, Davenport A et al (2015) Phenotype standardization for drug-induced kidney disease. Kidney Int 88:226–234

    Article  PubMed  PubMed Central  Google Scholar 

  80. Motzer RJ, Hutson TE, Olsen MR et al (2012) Randomized phase II trial of sunitinib on an intermittent versus continuous dosing schedule as first-line therapy for advanced renal cell carcinoma. J Clin Oncol 30:1371–1377

    Article  CAS  PubMed  Google Scholar 

  81. Willeke F, Horisberger K, Kraus-Tiefenbacher U et al (2007) A phase II study of capecitabine and irinotecan in combination with concurrent pelvic radiotherapy (CapIri-RT) as neoadjuvant treatment of locally advanced rectal cancer. Br J Cancer 96:912–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brahmer JR, Lacchetti C, Schneider BJ et al (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36:1714–1768

    Article  CAS  PubMed  Google Scholar 

  83. Rini BI, Escudier B, Tomczak P et al (2011) Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378:1931–1939

    Article  CAS  PubMed  Google Scholar 

  84. Khan G, Golshayan A, Elson P et al (2010) Sunitinib and sorafenib in metastatic renal cell carcinoma patients with renal insufficiency. Ann Oncol 21:1618–1622

    Article  CAS  PubMed  Google Scholar 

  85. Cassidy J, Twelves C, Van Cutsem E et al (2002) First-line oral capecitabine therapy in metastatic colorectal cancer: a favorable safety profile compared with intravenous 5-fluorouracil/leucovorin. Ann Oncol 13:566–575

    Article  CAS  PubMed  Google Scholar 

  86. Ha SH, Park JH, Jang HR et al (2014) Increased risk of everolimus-associated acute kidney injury in cancer patients with impaired kidney function. BMC Cancer 14:906

    Article  PubMed  PubMed Central  Google Scholar 

  87. Latcha S, Jaimes EA, Patil S et al (2016) Long-term renal outcomes after cisplatin treatment. Clin J Am Soc Nephrol 11:1173–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hanna RM, Barsoum M, Arman F et al (2019) Nephrotoxicity induced by intravitreal vascular endothelial growth factor inhibitors: emerging evidence. Kidney Int 96:572–580

    Article  CAS  PubMed  Google Scholar 

  89. Estrada CC, Maldonado A, Mallipattu SK (2019) Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol 30:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Usui J, Glezerman IG, Salvatore SP et al (2014) Clinicopathological spectrum of kidney diseases in cancer patients treated with vascular endothelial growth factor inhibitors: a report of 5 cases and review of literature. Hum Pathol 45:1918–1927

    Article  CAS  PubMed  Google Scholar 

  91. Izzedine H, Massard C, Spano JP et al (2010) VEGF signalling inhibition-induced proteinuria: mechanisms, significance and management. Eur J Cancer 46:439–448

    Article  CAS  PubMed  Google Scholar 

  92. Perazella MA, Shirali AC (2020) Immune checkpoint inhibitor nephrotoxicity: what do we know and what should we do? Kidney Int 97:62–74

    Article  CAS  PubMed  Google Scholar 

  93. Haanen J, Carbonnel F, Robert C et al (2017) Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 28:iv119–iv142

    Article  CAS  PubMed  Google Scholar 

  94. Eijgelsheim M, Sprangers B (2020) Kidney biopsy should be performed to document the cause of immune checkpoint inhibitor-associated acute kidney injury: PRO. Kidney360 1:158–161

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gutgarts V, Glezerman IG (2020) Kidney biopsy should be performed to document the cause of immune checkpoint inhibitor-associated acute kidney injury: CON. Kidney360 1:162–165

    Article  PubMed  PubMed Central  Google Scholar 

  96. Doi K, Nishida O, Shigematsu T et al (2018) The Japanese clinical practice guideline for acute kidney injury 2016. Clin Exp Nephrol 22:985–1045

    Article  PubMed  PubMed Central  Google Scholar 

  97. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c184

    Article  PubMed  Google Scholar 

  98. Manohar S, Kompotiatis P, Thongprayoon C et al (2019) Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis. Nephrol Dial Transplant 34:108–117

    Article  CAS  PubMed  Google Scholar 

  99. Japanese Society of nephrology (JSN), Japan Society of Clinical Oncology (JSCO), Japanese Society of Medical Oncology (JSMO), and The Japanese Society of Nephrology and Pharmacotherapy (JSNP) (2022) Clinical Practice Guidelines for Management of Kidney Injury During Anticancer Drug Therapy 2022, Life Science Co Ltd, Tokyo [Japanese]

  100. Japan Clinical Oncology Group (2022) Common Terminology Criteria for Adverse Events (CTCAE) version 5.0, http://www.jcog.jp/doctor/tool/CTCAEv5J_20220901_version.pdf

  101. Nishikubo M, Shimomura Y, Hiramoto N et al (2021) Reversible renal-limited thrombotic microangiopathy due to gemcitabine-dexamethasone-cisplatin therapy: a case report. BMC Nephrol 22:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ulusakarya A, Misra S, Haydar M et al (2010) Acute renal failure related to oxaliplatin-induced intravascular hemolysis. Med Oncol 27:1425–1426

    Article  CAS  PubMed  Google Scholar 

  103. Mahmood F, Matar M, Davis A (2014) Renal failure and hypocalcaemia secondary to cabazitaxel treatment for prostate cancer. J Clin Diagn Res 2:1–3

    Article  Google Scholar 

  104. Zuber J, Martinez F, Droz D et al (2002) Alpha-interferon-associated thrombotic microangiopathy: a clinicopathologic study of 8 patients and review of the literature. Medicine (Baltimore) 81:321–331

    Article  CAS  PubMed  Google Scholar 

  105. Lipson EJ, Huff CA, Holanda DG et al (2010) Lenalidomide-induced acute interstitial nephritis. Oncologist 15:961–964

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kaneko T, Shimizu A, Aoki M et al (2015) A case of gefitinib-associated membranous nephropathy in treatment for pulmonary adenocarcinoma. CEN Case Rep 4:31–37

    Article  PubMed  Google Scholar 

  107. Maruyama K, Chinda J, Kuroshima T et al (2015) Minimal change nephrotic syndrome associated with gefitinib and a successful switch to erlotinib. Intern Med 54:823–826

    Article  CAS  PubMed  Google Scholar 

  108. Calizo RC, Bhattacharya S, van Hasselt JGC et al (2019) Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity. Nat Commun 10:2061

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nagai K, Ono H, Matsuura M et al (2018) Progressive renal insufficiency related to ALK inhibitor, alectinib. Oxf Med Case Reports 2018:omy009

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cvitkovic E, Spaulding J, Bethune V et al (1977) Improvement of cis-dichlorodiammineplatinum (NSC 119875): therapeutic index in an animal model. Cancer 39:1357–1361

    Article  CAS  PubMed  Google Scholar 

  111. Sato K, Watanabe S, Ohtsubo A et al (2016) Nephrotoxicity of cisplatin combination chemotherapy in thoracic malignancy patients with CKD risk factors. BMC Cancer 16:222

    Article  PubMed  PubMed Central  Google Scholar 

  112. Adams M, Kerby IJ, Rocker I et al (1989) A comparison of the toxicity and efficacy of cisplatin and carboplatin in advanced ovarian cancer. The Swons Gynaecological Cancer Group. Acta Oncol 28:57–60

    Article  CAS  PubMed  Google Scholar 

  113. Mangioni C, Bolis G, Pecorelli S et al (1989) Randomized trial in advanced ovarian cancer comparing cisplatin and carboplatin. J Natl Cancer Inst 81:1464–1471

    Article  CAS  PubMed  Google Scholar 

  114. Lévi F, Metzger G, Massari C et al (2000) Oxaliplatin: pharmacokinetics and chronopharmacological aspects. Clin Pharmacokinet 38:1–21

    Article  PubMed  Google Scholar 

  115. Sutton RA, Walker VR, Halabe A et al (1991) Chronic hypomagnesemia caused by cisplatin: effect of calcitriol. J Lab Clin Med 117:40–43

    CAS  PubMed  Google Scholar 

  116. Lam M, Adelstein DJ (1986) Hypomagnesemia and renal magnesium wasting in patients treated with cisplatin. Am J Kidney Dis 8:164–169

    Article  CAS  PubMed  Google Scholar 

  117. Swainson CP, Colls BM, Fitzharris BM (1985) Cis-platinum and distal renal tubule toxicity. N Z Med J 98:375–378

    CAS  PubMed  Google Scholar 

  118. Portilla D, Li S, Nagothu KK et al (2006) Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 69:2194–2204

    Article  CAS  PubMed  Google Scholar 

  119. Oeffinger KC, Hudson MM (2004) Long-term complications following childhood and adolescent cancer: foundations for providing risk-based health care for survivors. CA Cancer J Clin 54:208–236

    Article  PubMed  Google Scholar 

  120. Vickers AE, Rose K, Fisher R et al (2004) Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol Pathol 32:577–590

    Article  CAS  PubMed  Google Scholar 

  121. Tanaka H, Ishikawa E, Teshima S et al (1986) Histopathological study of human cisplatin nephropathy. Toxicol Pathol 14:247–257

    Article  CAS  PubMed  Google Scholar 

  122. Cornelison TL, Reed E (1993) Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol 50:147–158

    Article  CAS  PubMed  Google Scholar 

  123. Manohar S, Bansal A, Wanchoo R et al (2019) Ibrutinib induced acute tubular injury: a case series and review of the literature. Am J Hematol 94:E223-e225

    Article  PubMed  Google Scholar 

  124. Crona DJ, Faso A, Nishijima TF et al (2017) A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ando Y (2023) Chapter 3: Management of kidney injury caused by anticancer drug therapy, from clinical practice guidelines for management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol [manuscript in submission]

  126. Nissim I, Horyn O, Daikhin Y et al (2006) Ifosfamide-induced nephrotoxicity: mechanism and prevention. Cancer Res 66:7824–7831

    Article  CAS  PubMed  Google Scholar 

  127. Ensergueix G, Pallet N, Joly D et al (2020) Ifosfamide nephrotoxicity in adult patients. Clin Kidney J 13:660–665

    Article  CAS  PubMed  Google Scholar 

  128. Skinner R, Sharkey IM, Pearson AD et al (1993) Ifosfamide, mesna, and nephrotoxicity in children. J Clin Oncol 11:173–190

    Article  CAS  PubMed  Google Scholar 

  129. Oberlin O, Fawaz O, Rey A et al (2009) Long-term evaluation of Ifosfamide-related nephrotoxicity in children. J Clin Oncol 27:5350–5355

    Article  CAS  PubMed  Google Scholar 

  130. Stöhr W, Paulides M, Bielack S et al (2007) Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the Late Effects Surveillance System. Pediatr Blood Cancer 48:447–452

    Article  PubMed  Google Scholar 

  131. Skinner R, Pearson AD, Price L et al (1990) Nephrotoxicity after ifosfamide. Arch Dis Child 65:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Skinner R, Cotterill SJ, Stevens MC (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG Late Effects Group study. United Kingdom Children’s Cancer Study Group. Br J Cancer 82:1636–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho PT, Zimmerman K, Wexler LH et al (1995) A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76:2557–2564

    Article  CAS  PubMed  Google Scholar 

  134. Akilesh S, Juaire N, Duffield JS et al (2014) Chronic ifosfamide toxicity: kidney pathology and pathophysiology. Am J Kidney Dis 63:843–850

    Article  CAS  PubMed  Google Scholar 

  135. Yaseen Z, Michoudet C, Baverel G et al (2008) In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro. Pediatr Nephrol 23:611–618

    Article  PubMed  Google Scholar 

  136. Hanly L, Rieder MJ, Huang SH et al (2013) N-acetylcysteine rescue protocol for nephrotoxicity in children caused by ifosfamide. J Popul Ther Clin Pharmacol 20:e132-145

    PubMed  Google Scholar 

  137. Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703

    Article  CAS  PubMed  Google Scholar 

  138. Abelson HT, Fosburg MT, Beardsley GP et al (1983) Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol 1:208–216

    Article  CAS  PubMed  Google Scholar 

  139. Amitai I, Rozovski U, El-Saleh R et al (2020) Risk factors for high-dose methotrexate associated acute kidney injury in patients with hematological malignancies. Hematol Oncol 38:584–588

    Article  CAS  PubMed  Google Scholar 

  140. Widemann BC, Balis FM, Kempf-Bielack B et al (2004) High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 100:2222–2232

    Article  CAS  PubMed  Google Scholar 

  141. Zattera T, Londrino F, Trezzi M et al (2017) Pemetrexed-induced acute kidney failure following irreversible renal damage: two case reports and literature review. J Nephropathol 6:43–48

    Article  PubMed  Google Scholar 

  142. Stavroulopoulos A, Nakopoulou L, Xydakis AM et al (2010) Interstitial nephritis and nephrogenic diabetes insipidus in a patient treated with pemetrexed. Ren Fail 32:1000–1004

    Article  CAS  PubMed  Google Scholar 

  143. Vootukuru V, Liew YP, Nally JV Jr (2006) Pemetrexed-induced acute renal failure, nephrogenic diabetes insipidus, and renal tubular acidosis in a patient with non-small cell lung cancer. Med Oncol 23:419–422

    Article  PubMed  Google Scholar 

  144. Rombolà G, Vaira F, Trezzi M et al (2015) Pemetrexed induced acute kidney injury in patients with non-small cell lung cancer: reversible and chronic renal damage. J Nephrol 28:187–191

    Article  PubMed  Google Scholar 

  145. Visser S, Huisbrink J, van ’t Veer NE, et al (2018) Renal impairment during pemetrexed maintenance in patients with advanced nonsmall cell lung cancer: a cohort study. Eur Respir J 52:1800884

    Article  PubMed  Google Scholar 

  146. Assayag M, Rouvier P, Gauthier M et al (2017) Renal failure during chemotherapy: renal biopsy for assessing subacute nephrotoxicity of pemetrexed. BMC Cancer 17:770

    Article  PubMed  PubMed Central  Google Scholar 

  147. Saif MW, Xyla V, Makrilia N et al (2009) Thrombotic microangiopathy associated with gemcitabine: rare but real. Expert Opin Drug Saf 8:257–260

    Article  CAS  PubMed  Google Scholar 

  148. Leal F, Macedo LT, Carvalheira JB (2014) Gemcitabine-related thrombotic microangiopathy: a single-centre retrospective series. J Chemother 26:169–172

    Article  CAS  PubMed  Google Scholar 

  149. Izzedine H, Isnard-Bagnis C, Launay-Vacher V et al (2006) Gemcitabine-induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant 21:3038–3045

    Article  CAS  PubMed  Google Scholar 

  150. Al-Nouri ZL, Reese JA, Terrell DR et al (2015) Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood 125:616–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McCarthy JT, Stoats BA (1986) Pulmonary hypertension, hemolytic anemia, and renal failure: a mitomycin-associated syndrome. Chest 89:608–611

    Article  CAS  PubMed  Google Scholar 

  152. El-Ghazal R, Podoltsev N, Marks P et al (2011) Mitomycin–C-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: cumulative toxicity of an old drug in a new era. Clin Colorectal Cancer 10:142–145

    Article  CAS  PubMed  Google Scholar 

  153. de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    Article  PubMed  Google Scholar 

  154. Ault BH, Stapleton FB, Gaber L et al (1988) Acute renal failure during therapy with recombinant human gamma interferon. N Engl J Med 319:1397–1400

    Article  CAS  PubMed  Google Scholar 

  155. Gallon L, Perico N, Dimitrov BD et al (2006) Long-term renal allograft function on a tacrolimus-based, pred-free maintenance immunosuppression comparing sirolimus vs. MMF Am J Transplant 6:1617–1623

    Article  CAS  PubMed  Google Scholar 

  156. Anglicheau D, Pallet N, Rabant M et al (2006) Role of P-glycoprotein in cyclosporine cytotoxicity in the cyclosporine-sirolimus interaction. Kidney Int 70:1019–1025

    Article  CAS  PubMed  Google Scholar 

  157. Paluri RK, Sonpavde G, Morgan C et al (2019) Renal toxicity with mammalian target of rapamycin inhibitors: a meta-analysis of randomized clinical trials. Oncol Rev 13:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dimopoulos M, Alegre A, Stadtmauer EA et al (2010) The efficacy and safety of lenalidomide plus dexamethasone in relapsed and/or refractory multiple myeloma patients with impaired renal function. Cancer 116:3807–3814

    Article  CAS  PubMed  Google Scholar 

  159. Niesvizky R, Naib T, Christos PJ et al (2007) Lenalidomide-induced myelosuppression is associated with renal dysfunction: adverse events evaluation of treatment-naïve patients undergoing front-line lenalidomide and dexamethasone therapy. Br J Haematol 138:640–643

    Article  CAS  PubMed  Google Scholar 

  160. Specter R, Sanchorawala V, Seldin DC et al (2011) Kidney dysfunction during lenalidomide treatment for AL amyloidosis. Nephrol Dial Transplant 26:881–886

    Article  CAS  PubMed  Google Scholar 

  161. Glezerman IG, Kewalramani T, Jhaveri K (2008) Reversible Fanconi syndrome due to lenalidomide. NDT Plus 1:215–217

    PubMed  PubMed Central  Google Scholar 

  162. Batts ED, Sanchorawala V, Hegerfeldt Y et al (2008) Azotemia associated with use of lenalidomide in plasma cell dyscrasias. Leuk Lymphoma 49:1108–1115

    Article  CAS  PubMed  Google Scholar 

  163. Matsubara T, Yanagita M (2018) Nephrotoxicity of chemotherapy agents. J Jpn Soc Int Med 107:865–871 (Japanese)

    Article  CAS  Google Scholar 

  164. Khurana A (2007) Allergic interstitial nephritis possibly related to sunitinib use. Am J Geriatr Pharmacother 5:341–344

    Article  CAS  PubMed  Google Scholar 

  165. Winn SK, Ellis S, Savage P et al (2009) Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant 24:673–675

    Article  CAS  PubMed  Google Scholar 

  166. Cortes JE, Gambacorti-Passerini C, Kim DW et al (2017) Effects of bosutinib treatment on renal function in patients with philadelphia chromosome-positive leukemias. Clin Lymphoma Myeloma Leuk 17:684-695.e686

    Article  PubMed  Google Scholar 

  167. Brosnan EM, Weickhardt AJ, Lu X et al (2014) Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small cell lung cancer treated with the ALK inhibitor crizotinib. Cancer 120:664–674

    Article  CAS  PubMed  Google Scholar 

  168. Wang ML, Rule S, Martin P et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jhaveri KD, Sakhiya V, Fishbane S (2015) Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib. JAMA Oncol 1:1133–1134

    Article  PubMed  Google Scholar 

  170. Teuma C, Perier-Muzet M, Pelletier S et al (2016) New insights into renal toxicity of the B-RAF inhibitor, vemurafenib, in patients with metastatic melanoma. Cancer Chemother Pharmacol 78:419–426

    Article  CAS  PubMed  Google Scholar 

  171. Cortazar FB, Kibbelaar ZA, Glezerman IG et al (2020) Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study. J Am Soc Nephrol 31:435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Espi M, Teuma C, Novel-Catin E et al (2021) Renal adverse effects of immune checkpoints inhibitors in clinical practice: ImmuNoTox study. Eur J Cancer 147:29–39

    Article  CAS  PubMed  Google Scholar 

  173. Kitchlu A, Jhaveri KD, Wadhwani S et al (2021) A systematic review of immune checkpoint inhibitor-associated glomerular disease. Kidney Int Rep 6:66–77

    Article  PubMed  Google Scholar 

  174. Cortazar FB, Marrone KA, Troxell ML et al (2016) Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 90:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mamlouk O, Selamet U, Machado S et al (2019) Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: single-center experience. J Immunother Cancer 7:2

    Article  PubMed  PubMed Central  Google Scholar 

  176. Meguro S, Nagata T, Yokoyama K et al (1984) Phase I study of 7-N-(p-hydroxyphenyl)-mitomycin C. Invest New Drugs 2:381–385

    Article  CAS  PubMed  Google Scholar 

  177. Pollera CF, Ceribelli A, Crecco M et al (1994) Weekly gemcitabine in advanced or metastatic solid tumors. A clinical phase I study. Invest New Drugs 12:111–119

    Article  CAS  PubMed  Google Scholar 

  178. Lund B, Hansen OP, Theilade K et al (1994) Phase II study of gemcitabine (2′,2′-difluorodeoxycytidine) in previously treated ovarian cancer patients. J Natl Cancer Inst 86:1530–1533

    Article  CAS  PubMed  Google Scholar 

  179. Levitt ML, Kassem B, Gooding WE et al (2004) Phase I study of gemcitabine given weekly as a short infusion for non-small cell lung cancer: results and possible immune system-related mechanisms. Lung Cancer 43:335–344

    Article  CAS  PubMed  Google Scholar 

  180. Daviet F, Rouby F, Poullin P et al (2019) Thrombotic microangiopathy associated with gemcitabine use: Presentation and outcome in a national French retrospective cohort. Br J Clin Pharmacol 85:403–412

    Article  CAS  PubMed  Google Scholar 

  181. Rini BI, Halabi S, Rosenberg JE et al (2008) Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26:5422–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mani S, Todd M, Poo WJ (1996) Recombinant beta-interferon in the treatment of patients with metastatic renal cell carcinoma. Am J Clin Oncol 19:187–189

    Article  CAS  PubMed  Google Scholar 

  183. Ravandi F, Estrov Z, Kurzrock R et al (1999) A phase I study of recombinant interferon-beta in patients with advanced malignant disease. Clin Cancer Res 5:3990–3998

    CAS  PubMed  Google Scholar 

  184. Zhao T, Wang X, Xu T et al (2017) Bevacizumab significantly increases the risks of hypertension and proteinuria in cancer patients: a systematic review and comprehensive meta-analysis. Oncotarget 8:51492–51506

    Article  PubMed  PubMed Central  Google Scholar 

  185. Saito H, Fukuhara T, Furuya N et al (2019) Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol 20:625–635

    Article  CAS  PubMed  Google Scholar 

  186. Van Wynsberghe M, Flejeo J, Sakhi H et al (2021) Nephrotoxicity of anti-angiogenic therapies. Diagnostics (Basel) 11:640

    Article  PubMed  Google Scholar 

  187. Fujita T, Hirayama T, Ishii D et al (2018) Efficacy and safety of sunitinib in elderly patients with advanced renal cell carcinoma. Mol Clin Oncol 9:394–398

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Rini BI, Plimack ER, Stus V et al (2019) Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 380:1116–1127

    Article  CAS  PubMed  Google Scholar 

  189. McCoach CE, Yu A, Gandara DR, et al (2021) Phase I/II study of capmatinib plus erlotinib in patients with MET-positive non-small-cell lung cancer. JCO Precis Oncol 1

  190. Akamatsu H, Toi Y, Hayashi H et al (2021) Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M-mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: west japan oncology group 8715L phase 2 randomized clinical trial. JAMA Oncol 7:386–394

    Article  PubMed  PubMed Central  Google Scholar 

  191. Kazandjian D, Blumenthal GM, Yuan W et al (2016) FDA approval of gefitinib for the treatment of patients with metastatic EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res 22:1307–1312

    Article  CAS  PubMed  Google Scholar 

  192. Giroux L, Bettez P, Giroux L (1985) Mitomycin-C nephrotoxicity: a clinico-pathologic study of 17 cases. Am J Kidney Dis 6:28–39

    Article  CAS  PubMed  Google Scholar 

  193. Fung MC, Storniolo AM, Nguyen B et al (1999) A review of hemolytic uremic syndrome in patients treated with gemcitabine therapy. Cancer 85:2023–2032

    Article  CAS  PubMed  Google Scholar 

  194. Müller S, Schütt P, Bojko P et al (2005) Hemolytic uremic syndrome following prolonged gemcitabine therapy: report of four cases from a single institution. Ann Hematol 84:110–114

    Article  PubMed  Google Scholar 

  195. Shah M, Jenis EH, Mookerjee BK et al (1998) Interferon-alpha-associated focal segmental glomerulosclerosis with massive proteinuria in patients with chronic myeloid leukemia following high dose chemotherapy. Cancer 83:1938–1946

    Article  CAS  PubMed  Google Scholar 

  196. Pfister F, Amann K, Daniel C et al (2018) Characteristic morphological changes in anti-VEGF therapy-induced glomerular microangiopathy. Histopathology 73:990–1001

    Article  PubMed  Google Scholar 

  197. Person F, Rinschen MM, Brix SR et al (2019) Bevacizumab-associated glomerular microangiopathy. Mod Pathol 32:684–700

    Article  CAS  PubMed  Google Scholar 

  198. Izzedine H, Mangier M, Ory V et al (2014) Expression patterns of RelA and c-mip are associated with different glomerular diseases following anti-VEGF therapy. Kidney Int 85:457–470

    Article  CAS  PubMed  Google Scholar 

  199. den Deurwaarder ES, Desar IM, Steenbergen EJ et al (2012) Kidney injury during VEGF inhibitor therapy. Neth J Med 70:267–271

    Google Scholar 

  200. Milan A, Puglisi E, Ferrari L et al (2014) Arterial hypertension and cancer. Int J Cancer 134:2269–2277

    Article  CAS  PubMed  Google Scholar 

  201. Kidoguchi S, Sugano N, Tokudome G et al (2021) New concept of onco-hypertension and future perspectives. Hypertension 77:16–27

    Article  CAS  PubMed  Google Scholar 

  202. Ranpura V, Pulipati B, Chu D et al (2010) Increased risk of high-grade hypertension with bevacizumab in cancer patients: a meta-analysis. Am J Hypertens 23:460–468

    Article  CAS  PubMed  Google Scholar 

  203. Hatake K, Doi T, Uetake H et al (2016) Bevacizumab safety in Japanese patients with colorectal cancer. Jpn J Clin Oncol 46:234–240

    Article  PubMed  Google Scholar 

  204. Bæk Møller N, Budolfsen C, Grimm D et al (2019) Drug-induced hypertension caused by multikinase inhibitors (sorafenib, sunitinib, lenvatinib and axitinib) in renal cell carcinoma treatment. Int J Mol Sci 20:4712

    Article  PubMed  PubMed Central  Google Scholar 

  205. Azizi M, Chedid A, Oudard S (2008) Home blood-pressure monitoring in patients receiving sunitinib. N Engl J Med 358:95–97

    Article  CAS  PubMed  Google Scholar 

  206. Grossman E, Messerli FH (2008) Secondary hypertension: interfering substances. J Clin Hypertens (Greenwich) 10:556–566

    Article  CAS  PubMed  Google Scholar 

  207. Dickerson T, Wiczer T, Waller A et al (2019) Hypertension and incident cardiovascular events following ibrutinib initiation. Blood 134:1919–1928

    Article  PubMed  PubMed Central  Google Scholar 

  208. Waxman AJ, Clasen S, Hwang WT et al (2018) Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol 4:e174519

    Article  PubMed  Google Scholar 

  209. Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121

    Article  CAS  PubMed  Google Scholar 

  210. Stinchcombe TE, Jänne PA, Wang X et al (2019) Effect of erlotinib plus bevacizumab vs erlotinib alone on progression-free survival in patients with advanced EGFR-mutant non-small cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol 5:1448–1455

    Article  PubMed  PubMed Central  Google Scholar 

  211. Tojo A, Kyo T, Yamamoto K et al (2017) Ponatinib in Japanese patients with Philadelphia chromosome-positive leukemia, a phase 1/2 study. Int J Hematol 106:385–397

    Article  CAS  PubMed  Google Scholar 

  212. (2019) Electrolytes and acid-base imbalances. In: Ahn W et al (eds) Pocket nephrology, Oncology. Wolters Kluwer, pp 9–33

  213. Garla VV, Salim S, Kovvuru KR, et al (2018) Hungry bone syndrome secondary to prostate cancer successfully treated with radium therapy. BMJ Case Rep 2018

  214. Waikar SS, Mount DB, Curhan GC (2009) Mortality after hospitalization with mild, moderate, and severe hyponatremia. Am J Med 122:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Doshi SM, Shah P, Lei X et al (2012) Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis 59:222–228

    Article  CAS  PubMed  Google Scholar 

  216. Sørensen JB, Andersen MK, Hansen HH (1995) Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant disease. J Intern Med 238:97–110

    Article  PubMed  Google Scholar 

  217. Bartalis E, Gergics M, Tinusz B et al (2021) Prevalence and prognostic significance of hyponatremia in patients with lung cancer: systematic review and meta-analysis. Front Med (Lausanne) 8:671951

    Article  PubMed  Google Scholar 

  218. Berghmans T, Paesmans M, Body JJ (2000) A prospective study on hyponatraemia in medical cancer patients: epidemiology, aetiology and differential diagnosis. Support Care Cancer 8:192–197

    Article  CAS  PubMed  Google Scholar 

  219. Seethapathy H, Rusibamayila N, Chute DF et al (2021) Hyponatremia and other electrolyte abnormalities in patients receiving immune checkpoint inhibitors. Nephrol Dial Transplant 36:2241–2247

    Article  CAS  PubMed  Google Scholar 

  220. Oronsky B, Caroen S, Oronsky A et al (2017) Electrolyte disorders with platinum-based chemotherapy: mechanisms, manifestations and management. Cancer Chemother Pharmacol 80:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Khan MI, Dellinger RP, Waguespack SG (2018) Electrolyte disturbances in critically ill cancer patients: an endocrine perspective. J Intensive Care Med 33:147–158

    Article  PubMed  Google Scholar 

  222. Spasovski G, Vanholder R, Allolio B et al (2014) Clinical practice guideline on diagnosis and treatment of hyponatraemia. Eur J Endocrinol 170:G1-47

    Article  CAS  PubMed  Google Scholar 

  223. Gralla RJ, Ahmad F, Blais JD et al (2017) Tolvaptan use in cancer patients with hyponatremia due to the syndrome of inappropriate antidiuretic hormone: a post hoc analysis of the SALT-1 and SALT-2 trials. Cancer Med 6:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Vassal G, Rubie H, Kalifa C et al (1987) Hyponatremia and renal sodium wasting in patients receiving cisplatinum. Pediatr Hematol Oncol 4:337–344

    Article  CAS  PubMed  Google Scholar 

  225. Pham PC, Reddy P, Qaqish S et al (2017) Cisplatin-induced renal salt wasting requiring over 12 liters of 3% saline replacement. Case Rep Nephrol 2017:8137078

    PubMed  PubMed Central  Google Scholar 

  226. Berardi R, Torniai M, Lenci E et al (2019) Electrolyte disorders in cancer patients: a systematic review. J Cancer Metastasis Treat 5:79

    CAS  Google Scholar 

  227. Seo MS, Hwang IC, Jung J et al (2020) Hypernatremia at admission predicts poor survival in patients with terminal cancer: a retrospective cohort study. BMC Palliat Care 19:94

    Article  PubMed  PubMed Central  Google Scholar 

  228. Salahudeen AK, Doshi SM, Shah P (2013) The frequency, cost, and clinical outcomes of hypernatremia in patients hospitalized to a comprehensive cancer center. Support Care Cancer 21:1871–1878

    Article  PubMed  Google Scholar 

  229. Liamis G, Milionis HJ, Elisaf M (2009) A review of drug-induced hypernatraemia. NDT Plus 2:339–346

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Garofeanu CG, Weir M, Rosas-Arellano MP et al (2005) Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 45:626–637

    Article  PubMed  Google Scholar 

  231. Stewart AF (2005) Clinical practice. Hypercalcemia associated with cancer. N Engl J Med 352:373–379

    Article  CAS  PubMed  Google Scholar 

  232. Rosner MH, Dalkin AC (2012) Onco-nephrology: the pathophysiology and treatment of malignancy-associated hypercalcemia. Clin J Am Soc Nephrol 7:1722–1729

    Article  CAS  PubMed  Google Scholar 

  233. Perazella MA, Eisen RN, Frederick WG et al (1993) Renal failure and severe hypokalemia associated with acute myelomonocytic leukemia. Am J Kidney Dis 22:462–467

    Article  CAS  PubMed  Google Scholar 

  234. Adhikari S, Mamlouk O, Rondon-Berrios H et al (2021) Hypophosphatemia in cancer patients. Clin Kidney J 14:2304–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Gupta S, Seethapathy H, Strohbehn IA et al (2020) Acute kidney injury and electrolyte abnormalities after chimeric antigen receptor T cell (CAR-T) therapy for diffuse large B cell lymphoma. Am J Kidney Dis 76:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Foster BJ, Clagett-Carr K, Leyland-Jones B et al (1985) Results of NCI-sponsored phase I trials with carboplatin. Cancer Treat Rev 12(Suppl A):43–49

    Article  PubMed  Google Scholar 

  237. Ikari A, Okude C, Sawada H et al (2008) TRPM6 expression and cell proliferation are up-regulated by phosphorylation of ERK1/2 in renal epithelial cells. Biochem Biophys Res Commun 369:1129–1133

    Article  CAS  PubMed  Google Scholar 

  238. Wang Q, Qi Y, Zhang D et al (2015) Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: a pooled analysis of 25 randomized clinical trials. Tumour Biol 36:3471–3482

    Article  CAS  PubMed  Google Scholar 

  239. Workeneh BT, Uppal NN, Jhaveri KD et al (2021) Hypomagnesemia in the cancer patient. Kidney360 2:154–166

    Article  PubMed  Google Scholar 

  240. Klempner SJ, Aubin G, Dash A et al (2014) Spontaneous regression of crizotinib-associated complex renal cysts during continuous crizotinib treatment. Oncologist 19:1008–1010

    Article  PubMed  PubMed Central  Google Scholar 

  241. Lin YT, Wang YF, Yang JC et al (2014) Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 9:1720–1725

    Article  CAS  PubMed  Google Scholar 

  242. Schnell P, Bartlett CH, Solomon BJ et al (2015) Complex renal cysts associated with crizotinib treatment. Cancer Med 4:887–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zalupski M, Baker LH (1988) Ifosfamide. J Natl Cancer Inst 80:556–566

    Article  CAS  PubMed  Google Scholar 

  244. Brade WP, Herdrich K, Varini M (1985) Ifosfamide–pharmacology, safety and therapeutic potential. Cancer Treat Rev 12:1–47

    Article  CAS  PubMed  Google Scholar 

  245. Hensley ML, Schuchter LM, Lindley C et al (1999) American Society of Clinical Oncology clinical practice guidelines for the use of chemotherapy and radiotherapy protectants. J Clin Oncol 17:3333–3355

    Article  CAS  PubMed  Google Scholar 

  246. Hensley ML, Hagerty KL, Kewalramani T et al (2009) American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 27:127–145

    Article  CAS  PubMed  Google Scholar 

  247. Fukuoka M, Si N, Masuda N et al (1991) Placebo-controlled double-blind comparative study on the preventive efficacy of mesna against ifosfamide-induced urinary disorders. J Cancer Res Clin Oncol 117:473–478

    Article  CAS  PubMed  Google Scholar 

  248. Sakurai M, Saijo N, Shinkai T et al (1986) The protective effect of 2-mercapto-ethane sulfonate (MESNA) on hemorrhagic cystitis induced by high-dose ifosfamide treatment tested by a randomized crossover trial. Jpn J Clin Oncol 16:153–156

    Article  CAS  PubMed  Google Scholar 

  249. Vose JM, Reed EC, Pippert GC et al (1993) Mesna compared with continuous bladder irrigation as uroprotection during high-dose chemotherapy and transplantation: a randomized trial. J Clin Oncol 11:1306–1310

    Article  CAS  PubMed  Google Scholar 

  250. Guleria AS, Yang JC, Topalian SL et al (1994) Renal dysfunction associated with the administration of high-dose interleukin-2 in 199 consecutive patients with metastatic melanoma or renal carcinoma. J Clin Oncol 12:2714–2722

    Article  CAS  PubMed  Google Scholar 

  251. Belldegrun A, Webb DE, Austin HA 3rd et al (1987) Effects of interleukin-2 on renal function in patients receiving immunotherapy for advanced cancer. Ann Intern Med 106:817–822

    Article  CAS  PubMed  Google Scholar 

  252. (2022) Chugai Pharmaceutical Co., Ltd. Guide for appropriate use of ROZLYTREK® [Japanese], https://chugai-pharm.jp/content/dam/chugai/product/roz/cap/guide/doc/roz_guide.pdf

  253. US Food and Drug Administ rat ion. FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC: Full prescribing information for ROZLYTREK. https://www.fda.gov/drugs/resources-information-approved-drugs/fdaapproves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc

  254. Chappell JC, Turner PK, Pak YA et al (2019) Abemaciclib inhibits renal tubular secretion without changing glomerular filtration rate. Clin Pharmacol Ther 105:1187–1195

    Article  CAS  PubMed  Google Scholar 

  255. Gupta S, Caza T, Herrmann SM et al (2022) Clinicopathologic features of acute kidney injury associated with CDK4/6 inhibitors. Kidney Int Rep 7:618–623

    Article  PubMed  Google Scholar 

  256. Christiansen CF, Johansen MB, Langeberg WJ et al (2011) Incidence of acute kidney injury in cancer patients: a Danish population-based cohort study. Eur J Intern Med 22:399–406

    Article  PubMed  Google Scholar 

  257. Salahudeen AK, Doshi SM, Pawar T et al (2013) Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin J Am Soc Nephrol 8:347–354

    Article  PubMed  Google Scholar 

  258. Duan ZY, Liu JQ, Yin P et al (2018) Impact of aging on the risk of platinum-related renal toxicity: a systematic review and meta-analysis. Cancer Treat Rev 69:243–253

    Article  CAS  PubMed  Google Scholar 

  259. Miyoshi T, Uoi M, Omura F et al (2021) Risk factors for cisplatin-induced nephrotoxicity: a multicenter retrospective study. Oncology 99:105–113

    Article  CAS  PubMed  Google Scholar 

  260. Mohri J, Katada C, Ueda M et al (2018) Predisposing factors for chemotherapy-induced nephrotoxicity in patients with advanced esophageal cancer who received combination chemotherapy with docetaxel, cisplatin, and 5-fluorouracil. J Transl Int Med 6:32–37

    Article  PubMed  PubMed Central  Google Scholar 

  261. Inai H, Kawai K, Ikeda A et al (2013) Risk factors for chronic kidney disease after chemotherapy for testicular cancer. Int J Urol 20:716–722

    Article  CAS  PubMed  Google Scholar 

  262. de Jongh FE, van Veen RN, Veltman SJ et al (2003) Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br J Cancer 88:1199–1206

    Article  PubMed  PubMed Central  Google Scholar 

  263. Uchida M, Kondo Y, Suzuki S et al (2019) Evaluation of acute kidney injury associated with anticancer drugs used in gastric cancer in the Japanese Adverse Drug Event Report Database. Ann Pharmacother 53:1200–1206

    Article  CAS  PubMed  Google Scholar 

  264. Farry JK, Flombaum CD, Latcha S (2012) Long term renal toxicity of ifosfamide in adult patients–5 year data. Eur J Cancer 48:1326–1331

    Article  CAS  PubMed  Google Scholar 

  265. de Rouw N, Boosman RJ, van de Bruinhorst H et al (2020) Cumulative pemetrexed dose increases the risk of nephrotoxicity. Lung Cancer 146:30–35

    Article  PubMed  Google Scholar 

  266. Kitchlu A, McArthur E, Amir E et al (2019) Acute kidney injury in patients receiving systemic treatment for cancer: a population-based cohort study. J Natl Cancer Inst 111:727–736

    Article  PubMed  Google Scholar 

  267. Petrelli F, Borgonovo K, Cabiddu M et al (2012) Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf 11(Suppl 1):S9-19

    Article  CAS  PubMed  Google Scholar 

  268. Streb J, Püsküllüoğlu M, Glanowska I et al (2015) Assessment of frequency and severity of hypomagnesemia in patients with metastatic colorectal cancer treated with cetuximab, with a review of the literature. Oncol Lett 10:3749–3755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6:152–156

    Article  CAS  PubMed  Google Scholar 

  270. Zhu X, Wu S, Dahut WL et al (2007) Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 49:186–193

    Article  CAS  PubMed  Google Scholar 

  271. Cappagli V, Moriconi D, Bonadio AG et al (2021) Proteinuria is a late-onset adverse event in patients treated with cabozantinib. J Endocrinol Invest 44:95–103

    Article  CAS  PubMed  Google Scholar 

  272. Meraz-Muñoz A, Amir E, Ng P et al (2020) Acute kidney injury associated with immune checkpoint inhibitor therapy: incidence, risk factors and outcomes. J Immunother Cancer 8:e000467

    Article  PubMed  PubMed Central  Google Scholar 

  273. Shimamura Y, Watanabe S, Maeda T et al (2021) Incidence and risk factors of acute kidney injury, and its effect on mortality among Japanese patients receiving immune check point inhibitors: a single-center observational study. Clin Exp Nephrol 25:479–487

    Article  CAS  PubMed  Google Scholar 

  274. Zheng K, Qiu W, Wang H et al (2020) Clinical recommendations on diagnosis and treatment of immune checkpoint inhibitor-induced renal immune-related adverse events. Thorac Cancer 11:1746–1751

    Article  PubMed  PubMed Central  Google Scholar 

  275. Galfetti E, Cerutti A, Ghielmini M et al (2020) Risk factors for renal toxicity after inpatient cisplatin administration. BMC Pharmacol Toxicol 21:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ben Ayed W, Ben Said A, Hamdi A et al (2020) Toxicity, risk factors and management of cisplatin-induced toxicity: a prospective study. J Oncol Pharm Pract 26:1621–1629

    Article  CAS  PubMed  Google Scholar 

  277. Kidera Y, Kawakami H, Sakiyama T et al (2014) Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PLoS ONE 9:e101902

    Article  PubMed  PubMed Central  Google Scholar 

  278. Mizuno T, Ishikawa K, Sato W et al (2013) The risk factors of severe acute kidney injury induced by cisplatin. Oncology 85:364–369

    Article  CAS  PubMed  Google Scholar 

  279. van der Vorst M, Neefjes ECW, Toffoli EC et al (2019) Incidence and risk factors for acute kidney injury in head and neck cancer patients treated with concurrent chemoradiation with high-dose cisplatin. BMC Cancer 19:1066

    Article  PubMed  PubMed Central  Google Scholar 

  280. Okamoto K, Saito Y, Narumi K et al (2020) Non-steroidal anti-inflammatory drugs are a risk factor for cisplatin-induced nephrotoxicity: a meta-analysis of retrospective studies. Anticancer Res 40:1747–1751

    Article  CAS  PubMed  Google Scholar 

  281. Yamamoto Y, Watanabe K, Matsushita H et al (2017) Multivariate analysis of risk factors for cisplatin-induced nephrotoxicity in gynecological cancer. J Obstet Gynaecol Res 43:1880–1886

    Article  CAS  PubMed  Google Scholar 

  282. Patimarattananan T, Nongnuch A, Pattaranutaporn P et al (2021) Risk and impact of delayed renal impairment in patients with locally advanced head and neck squamous cell carcinoma receiving chemoradiotherapy with cisplatin. Support Care Cancer 29:877–887

    Article  PubMed  Google Scholar 

  283. Almanric K, Marceau N, Cantin A et al (2017) Risk factors for nephrotoxicity associated with cisplatin. Can J Hosp Pharm 70:99–106

    PubMed  PubMed Central  Google Scholar 

  284. Liu JQ, Cai GY, Wang SY et al (2018) The characteristics and risk factors for cisplatin-induced acute kidney injury in the elderly. Ther Clin Risk Manag 14:1279–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Motwani SS, McMahon GM, Humphreys BD et al (2018) Development and validation of a risk prediction model for acute kidney injury after the first course of cisplatin. J Clin Oncol 36:682–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Komaki K, Kusaba T, Tanaka M et al (2017) Lower blood pressure and risk of cisplatin nephrotoxicity: a retrospective cohort study. BMC Cancer 17:144

    Article  PubMed  PubMed Central  Google Scholar 

  287. Burns CV, Edwin SB, Szpunar S et al (2021) Cisplatin-induced nephrotoxicity in an outpatient setting. Pharmacotherapy 41:184–190

    Article  CAS  PubMed  Google Scholar 

  288. Stewart DJ, Dulberg CS, Mikhael NZ et al (1997) Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother Pharmacol 40:293–308

    Article  CAS  PubMed  Google Scholar 

  289. Lauritsen J, Mortensen MS, Kier MGG et al (2015) Renal impairment and late toxicity in germ-cell cancer survivors. Ann Oncol 26:173–178

    Article  CAS  PubMed  Google Scholar 

  290. Zhang KJ, Hanna NH, Althouse SK et al (2020) Risk factors for acute kidney injury during high-dose chemotherapy and outcomes for patients with relapsed germ cell tumors. Clin Genitourin Cancer 18:e585–e587

    Article  PubMed  Google Scholar 

  291. Park SE, Hwang JH, Choi JH et al (2019) Incidence, risk factors, and clinical outcomes of acute kidney injury caused by palliative chemotherapy in lung cancer. J Cancer 10:5332–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. García-Carro C, Bolufer M, Bury R et al (2022) Acute kidney injury as a risk factor for mortality in oncological patients receiving checkpoint inhibitors. Nephrol Dial Transplant 37:887–894

    PubMed  Google Scholar 

  293. Stein C, Burtey S, Mancini J et al (2021) Acute kidney injury in patients treated with anti-programmed death receptor-1 for advanced melanoma: a real-life study in a single-centre cohort. Nephrol Dial Transplant 36:1664–1674

    Article  CAS  PubMed  Google Scholar 

  294. Seethapathy H, Zhao S, Chute DF et al (2019) The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clin J Am Soc Nephrol 14:1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article is the secondary publication from Japanese version by Japanese Society of nephrology (JSN), Japan Society of Clinical Oncology (JSCO), Japanese Society of Medical Oncology (JSMO), and The Japanese Society of Nephrology and Pharmacotherapy (JSNP) that was published Lifescience publishers Co Ltd, Tokyo, Japan, with permission. We greatly thank other guideline committee members for peer reviews and external review teams from JSN, JSCO, JSMO, JSNP, and the Japanese Society for Dialysis Therapy for their suggestive advice and cooperation.

We also thank Toshio Morizane (Japan Council for Quality Health Care), Takeo Nakayama (Department of Health Informatics, School of Public Health, Kyoto University Graduate School of Medicine), and Shigeo Horie (Department of Urology, Juntendo University Faculty of Medicine) for an advisor, Naoki Kashihara (Kawasaki Medical School), Mototsugu Oya (Keio University School of Medicine), Hirokazu Okada (Saitama Medical University), and Masaomi Nangaku (The University of Tokyo) for supervisors of the guideline, Takashi Yokoo (JSN academic committee chairman, Jikei University School of Medicine) and Kengo Furuichi (JSN academic committee vice chairman, Kanazawa Medical University School of Medicine) for observers, Eiichiro Kanda (Kawasaki Medical School) and Takaaki Suzuki (Nara Medical University Library) for systematic literature searching, Hitoshi Watanabe (Lifescience, Co. Ltd.) for editing the Japanese version of the guidelines, office staffs of JSN, JSCO, JSMO, and JSNP, and Yasuhiro Komatsu (Gunma University) for helpful supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoru Muto.

Ethics declarations

Conflict of interest

H. Kitamura has received honoraria from Astellas Pharma Inc, Takeda Pharmaceutical Company Limited, Bayer AG, and Janssen Pharmaceutical K.K., and scholarship donations from Takeda Pharmaceutical Company Limited and Bayer AG. T.K received honoraria from AstraZeneca. H. Yokoi has received honoraria from AstraZeneca and Mitsubishi Tanabe Pharma, and a scholarship donation from Mitsubishi Tanabe Pharmaceutical Corporation. J.H has received honoraria from Kyowa Kirin Co., Ltd., Mitsubishi Tanabe Pharma, Ono Pharm, AstraZeneca and Astellas Pharma Inc, and a research grant from Otsuka Pharmaceutical Co., Ltd. M. Yanagita has received honoraria from Astellas Pharma Inc, AstraZeneca, Kyowa Kirin Co., Ltd., Chugai-Pharmaceutical Co., Ltd., Bayer AG, and Mitsubishi Tanabe Pharma, and research grants from Mitsubishi Tanabe Pharma, Boehringer Ingelheim International GmbH, and scholarship donations from Kyowa Kirin Co., Ltd., Chugai-Pharmaceutical Co., Ltd., and Mitsubishi Tanabe Pharma. The other authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muto, S., Matsubara, T., Inoue, T. et al. Chapter 1: Evaluation of kidney function in patients undergoing anticancer drug therapy, from clinical practice guidelines for the management of kidney injury during anticancer drug therapy 2022. Int J Clin Oncol 28, 1259–1297 (2023). https://doi.org/10.1007/s10147-023-02372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02372-4

Keywords

Navigation