Skip to main content

Advertisement

Log in

Nephrotoxicity associated with anticancer agents: perspective on onconephrology from nephrologists

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Nephrotoxicity is one of the most important complications in cancer patients. In particular, acute kidney injury (AKI) is known to be associated with discontinuing effective oncological treatments, longer hospitalizations, increased costs, and a higher risk of death. In addition to acute kidney injury, clinical signs associated with nephrotoxicity during treatment with anticancer agents include chronic kidney disease, proteinuria, hypertension, electrolyte abnormalities, and other characteristic manifestations. Many of these signs are caused both by cancer treatment as well as by cancer itself. Therefore, it is important to carefully recognize whether the underlying causes of renal impairment in cancer patients are cancer-related, treatment-related, or both. This review describes the epidemiology and pathophysiology of anticancer agent-induced acute kidney injury, proteinuria, hypertension, and other characteristic manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated in this study are available in this article and the online supplementary materials.

References

  1. Person F, Rinschen MM, Brix SR et al (2019) Bevacizumab-associated glomerular microangiopathy. Modern Pathol 32:684–700

    Article  CAS  Google Scholar 

  2. Rini BI, Cohen DP, Lu DR et al (2011) Hypertension as a biomarker of efficacy in patients with metastatic renal cell carcinoma treated with sunitinib. J Natl Cancer Inst 103:763–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cortazar FB, Kibbelaar ZA, Glezerman IG et al (2020) Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: a multicenter study. J Am Soc Nephrol 31:435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gupta S, Short SAP, Sise ME et al (2021) Acute kidney injury in patients treated with immune checkpoint inhibitors. J Immunother Cancer 9:e003467

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gupta S, Cortazar FB, Riella LV et al (2020) Immune checkpoint inhibitor nephrotoxicity: update 2020. Kidney 360(1):130–140

    Article  Google Scholar 

  6. Paluri RK, Sonpavde G, Morgan C et al (2019) Renal toxicity with mammalian target of rapamycin inhibitors: a meta-analysis of randomized clinical trials. Oncol Rev 13:455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cortes JE, Gambacorti-Passerini C, Kim DW et al (2017) Effects of bosutinib treatment on renal function in patients with Philadelphia chromosome-positive leukemias. Clin Lymphoma Myeloma Leuk 17:684-695.e686

    Article  PubMed  Google Scholar 

  8. Wang ML, Rule S, Martin P et al (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med 369:507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brosnan EM, Weickhardt AJ, Lu X et al (2014) Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small cell lung cancer treated with the ALK inhibitor crizotinib. Cancer 120:664–674

    Article  CAS  PubMed  Google Scholar 

  10. Klempner SJ, Aubin G, Dash A et al (2014) Spontaneous regression of crizotinib-associated complex renal cysts during continuous crizotinib treatment. Oncologist 19:1008–1010

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wanchoo R, Jhaveri KD, Deray G et al (2016) Renal effects of BRAF inhibitors: a systematic review by the cancer and the kidney international network. Clin Kidney J 9:245–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jhaveri KD, Sakhiya V, Fishbane S (2015) Nephrotoxicity of the BRAF inhibitors vemurafenib and dabrafenib. JAMA Oncol 1:1133–1134

    Article  PubMed  Google Scholar 

  13. Chappell JC, Turner PK, Pak YA et al (2019) Abemaciclib inhibits renal tubular secretion without changing glomerular filtration rate. Clin Pharmacol Ther 105:1187–1195

    Article  CAS  PubMed  Google Scholar 

  14. Gupta S, Caza T, Herrmann SM et al (2022) Clinicopathologic features of acute kidney injury associated with CDK4/6 inhibitors. Kidney Int Rep 7:618–623

    Article  PubMed  Google Scholar 

  15. Sato K, Watanabe S, Ohtsubo A et al (2016) Nephrotoxicity of cisplatin combination chemotherapy in thoracic malignancy patients with CKD risk factors. BMC Cancer 16:222

    Article  PubMed  PubMed Central  Google Scholar 

  16. Adams M, Kerby IJ, Rocker I et al (1989) A comparison of the toxicity and efficacy of cisplatin and carboplatin in advanced ovarian cancer. The Swons Gynaecological Cancer Group. Acta Oncol 28:57–60

    Article  CAS  PubMed  Google Scholar 

  17. Mangioni C, Bolis G, Pecorelli S et al (1989) Randomized trial in advanced ovarian cancer comparing cisplatin and carboplatin. J Natl Cancer Inst 81:1464–1471

    Article  CAS  PubMed  Google Scholar 

  18. Crona DJ, Faso A, Nishijima TF et al (2017) A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist 22:609–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ensergueix G, Pallet N, Joly D et al (2020) Ifosfamide nephrotoxicity in adult patients. Clin Kidney J 13:660–665

    Article  CAS  PubMed  Google Scholar 

  20. Oberlin O, Fawaz O, Rey A et al (2009) Long-term evaluation of Ifosfamide-related nephrotoxicity in children. J Clin Oncol 27:5350–5355

    Article  CAS  PubMed  Google Scholar 

  21. Stöhr W, Paulides M, Bielack S et al (2007) Ifosfamide-induced nephrotoxicity in 593 sarcoma patients: a report from the late effects surveillance system. Pediatr Blood Cancer 48:447–452

    Article  PubMed  Google Scholar 

  22. Skinner R, Pearson AD, Price L et al (1990) Nephrotoxicity after ifosfamide. Arch Dis Child 65:732–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Skinner R, Cotterill SJ, Stevens MC (2000) Risk factors for nephrotoxicity after ifosfamide treatment in children: a UKCCSG late effects group study. United Kingdom Children’s Cancer Study Group. Br J Cancer 82:1636–1645

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ho PT, Zimmerman K, Wexler LH et al (1995) A prospective evaluation of ifosfamide-related nephrotoxicity in children and young adults. Cancer 76:2557–2564

    Article  CAS  PubMed  Google Scholar 

  25. Yaseen Z, Michoudet C, Baverel G et al (2008) In vivo mesna and amifostine do not prevent chloroacetaldehyde nephrotoxicity in vitro. Pediatr Nephrol 23:611–618

    Article  PubMed  Google Scholar 

  26. Lawrence HJ, Simone J, Aur RJ (1975) Cyclophosphamide-induced hemorrhagic cystitis in children with leukemia. Cancer 36:1572–1576

    Article  CAS  PubMed  Google Scholar 

  27. Zalupski M, Baker LH (1988) Ifosfamide. J Natl Cancer Inst 80:556–566

    Article  CAS  PubMed  Google Scholar 

  28. Brade WP, Herdrich K, Varini M (1985) Ifosfamide–pharmacology, safety and therapeutic potential. Cancer Treat Rev 12:1–47

    Article  CAS  PubMed  Google Scholar 

  29. Miyata M, Ichikawa K, Matsuki E et al (2021) Recent advances of acute kidney injury in hematopoietic cell transplantation. Front Immunol 12:779881

    Article  CAS  PubMed  Google Scholar 

  30. Amitai I, Rozovski U, El-Saleh R et al (2020) Risk factors for high-dose methotrexate associated acute kidney injury in patients with hematological malignancies. Hematol Oncol 38:584–588

    Article  CAS  PubMed  Google Scholar 

  31. Widemann BC, Balis FM, Kempf-Bielack B et al (2004) High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma. Cancer 100:2222–2232

    Article  CAS  PubMed  Google Scholar 

  32. Abelson HT, Fosburg MT, Beardsley GP et al (1983) Methotrexate-induced renal impairment: clinical studies and rescue from systemic toxicity with high-dose leucovorin and thymidine. J Clin Oncol 1:208–216

    Article  CAS  PubMed  Google Scholar 

  33. Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703

    Article  CAS  PubMed  Google Scholar 

  34. Vootukuru V, Liew YP, Nally JV Jr (2006) Pemetrexed-induced acute renal failure, nephrogenic diabetes insipidus, and renal tubular acidosis in a patient with non-small cell lung cancer. Med Oncol 23:419–422

    Article  PubMed  Google Scholar 

  35. Zattera T, Londrino F, Trezzi M et al (2017) Pemetrexed-induced acute kidney failure following irreversible renal damage: two case reports and literature review. J Nephropathol 6:43–48

    Article  PubMed  Google Scholar 

  36. Stavroulopoulos A, Nakopoulou L, Xydakis AM et al (2010) Interstitial nephritis and nephrogenic diabetes insipidus in a patient treated with pemetrexed. Ren Fail 32:1000–1004

    Article  CAS  PubMed  Google Scholar 

  37. de Rouw N, Boosman RJ, van de Bruinhorst H et al (2020) Cumulative pemetrexed dose increases the risk of nephrotoxicity. Lung Cancer 146:30–35

    Article  PubMed  Google Scholar 

  38. Kawazoe H, Yano A, Ishida Y et al (2017) Non-steroidal anti-inflammatory drugs induce severe hematologic toxicities in lung cancer patients receiving pemetrexed plus carboplatin: a retrospective cohort study. PLoS ONE 12:e0171066

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zupancic M, Shah PC, Shah-Khan F et al (2007) Gemcitabine-associated thrombotic thrombocytopenic purpura. Lancet Oncol 8:634–641

    Article  CAS  PubMed  Google Scholar 

  40. Grall M, Daviet F, Chiche NJ et al (2021) Eculizumab in gemcitabine-induced thrombotic microangiopathy: experience of the French thrombotic microangiopathies reference centre. BMC Nephrol 22:267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. El-Ghazal R, Podoltsev N, Marks P et al (2011) Mitomycin–C-induced thrombotic thrombocytopenic purpura/hemolytic uremic syndrome: cumulative toxicity of an old drug in a new era. Clin Colorectal Cancer 10:142–145

    Article  CAS  PubMed  Google Scholar 

  42. de Bono JS, Oudard S, Ozguroglu M et al (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376:1147–1154

    Article  PubMed  Google Scholar 

  43. Doshi SM, Shah P, Lei X et al (2012) Hyponatremia in hospitalized cancer patients and its impact on clinical outcomes. Am J Kidney Dis 59:222–228

    Article  CAS  PubMed  Google Scholar 

  44. Berghmans T (1996) Hyponatremia related to medical anticancer treatment. Support Care Cancer 4:341–350

    Article  CAS  PubMed  Google Scholar 

  45. Oronsky B, Caroen S, Oronsky A et al (2017) Electrolyte disorders with platinum-based chemotherapy: mechanisms, manifestations and management. Cancer Chemother Pharmacol 80:895–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seethapathy H, Rusibamayila N, Chute DF et al (2021) Hyponatremia and other electrolyte abnormalities in patients receiving immune checkpoint inhibitors. Nephrol Dial Transplant 36:2241–2247

    Article  CAS  PubMed  Google Scholar 

  47. Gralla RJ, Ahmad F, Blais JD et al (2017) Tolvaptan use in cancer patients with hyponatremia due to the syndrome of inappropriate antidiuretic hormone: a post hoc analysis of the SALT-1 and SALT-2 trials. Cancer Med 6:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abou-Alfa GK, Sahai V, Hollebecque A et al (2020) Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol 21:671–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Adhikari S, Mamlouk O, Rondon-Berrios H et al (2021) Hypophosphatemia in cancer patients. Clin Kidney J 14:2304–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peterson BA, Collins AJ, Vogelzang NJ et al (1981) 5-azacytidine and renal tubular dysfunction. Blood 57:182–185

    Article  CAS  PubMed  Google Scholar 

  51. Berman E, Nicolaides M, Maki RG et al (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013

    Article  CAS  PubMed  Google Scholar 

  52. Foster BJ, Clagett-Carr K, Leyland-Jones B et al (1985) Results of NCI-sponsored phase I trials with carboplatin. Cancer Treat Rev 12:43–49

    Article  PubMed  Google Scholar 

  53. Wang Q, Qi Y, Zhang D et al (2015) Electrolyte disorders assessment in solid tumor patients treated with anti-EGFR monoclonal antibodies: a pooled analysis of 25 randomized clinical trials. Tumor Biology 36:3471–3482

    Article  CAS  PubMed  Google Scholar 

  54. Workeneh BT, Uppal NN, Jhaveri KD et al (2021) Hypomagnesemia in the cancer patient. Kidney 360(2):154

    Article  Google Scholar 

  55. Asai A, Katsuno T, Yamaguchi M et al (2020) Carboplatin-related acute interstitial nephritis in a patient with pancreatic neuroendocrine tumor. CEN Case Rep 9:114–121

    Article  PubMed  Google Scholar 

  56. Ulusakarya A, Misra S, Haydar M et al (2010) Acute renal failure related to oxaliplatin-induced intravascular hemolysis. Med Oncol 27:1425–1426

    Article  CAS  PubMed  Google Scholar 

  57. Mahmood F, Matar M, Davis A (2014) Renal failure and hypocalcaemia secondary to cabazitaxel treatment for prostate cancer: a rare but potentially lethal side effect. J Clin Diagn Res 2:106–108

    Article  Google Scholar 

  58. Fabrizi F, Aghemo A, Fogazzi GB et al (2013) Acute tubular necrosis following interferon-based therapy for hepatitis C: case study with literature review. Kidney Blood Press Res 38:52–60

    Article  CAS  PubMed  Google Scholar 

  59. Izzedine H, Escudier B, Rouvier P et al (2013) Acute tubular necrosis associated with mTOR inhibitor therapy: a real entity biopsy-proven. Ann Oncol 24:2421–2425

    Article  CAS  PubMed  Google Scholar 

  60. Kreiniz N, Khateeb ALI, Gino-Moor S et al (2016) Acute renal failure associated with lenalidomide treatment in multiple myeloma: a rare occurrence? Anticancer Res 36:2889

    CAS  PubMed  Google Scholar 

  61. Lipson EJ, Huff CA, Holanda DG et al (2010) Lenalidomide-induced acute interstitial nephritis. Oncologist 15:961–964

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sanz MA, Montesinos P (2014) How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood 123:2777–2782

    Article  CAS  PubMed  Google Scholar 

  63. Izzedine H, Brocheriou I, Rixe O et al (2007) Interstitial nephritis in a patient taking sorafenib. Nephrol Dial Transplant 22:2411–2411

    Article  PubMed  Google Scholar 

  64. Winn SK, Ellis S, Savage P et al (2009) Biopsy-proven acute interstitial nephritis associated with the tyrosine kinase inhibitor sunitinib: a class effect? Nephrol Dial Transplant 24:673–675

    Article  CAS  PubMed  Google Scholar 

  65. Azar I, Esfandiarifard S, Sinai P et al (2017) Sunitinib-induced acute interstitial nephritis in a thrombocytopenic renal cell cancer patient. Case Rep Oncol Med 2017:6328204

    PubMed  PubMed Central  Google Scholar 

  66. Launay-Vacher V, Zimner-Rapuch S, Poulalhon N et al (2014) Acute renal failure associated with the new BRAF inhibitor vemurafenib: a case series of 8 patients. Cancer 120:2158–2163

    Article  CAS  PubMed  Google Scholar 

  67. Jackson AM, Rose BD, Graff LG et al (1984) Thrombotic microangiopathy and renal failure associated with antineoplastic chemotherapy. Ann Intern Med 101:41–44

    Article  CAS  PubMed  Google Scholar 

  68. Nishikubo M, Shimomura Y, Hiramoto N et al (2021) Reversible renal-limited thrombotic microangiopathy due to gemcitabine-dexamethasone-cisplatin therapy: a case report. BMC Nephrol 22:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Blake-Haskins JA, Lechleider RJ, Kreitman RJ (2011) Thrombotic microangiopathy with targeted cancer agents. Clin Cancer Res 17:5858–5866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kavanagh D, McGlasson S, Jury A et al (2016) Type I interferon causes thrombotic microangiopathy by a dose-dependent toxic effect on the microvasculature. Blood 128:2824–2833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Font C, de Herreros MG, Tsoukalas N et al (2022) The MHSG: thrombotic microangiopathy (TMA) in adult patients with solid tumors: a challenging complication in the era of emerging anticancer therapies. Support Care Cancer 30:8599–8609

    Article  PubMed  PubMed Central  Google Scholar 

  72. Van Wynsberghe M, Flejeo J, Sakhi H et al (2021) Nephrotoxicity of anti-angiogenic therapies. Diagnostics 11:640

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zhang Z-F, Wang T, Liu L-H et al (2014) Risks of proteinuria associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a systematic review and meta-analysis. PLoS ONE 9:e90135

    Article  PubMed  PubMed Central  Google Scholar 

  74. Arai H, Yamamoto S, Matsubara T, Miyake T, Tochio A, Mii A, Shimizu A, Minamiguchi S, Muso E, Yanagita M. 2022. Focal Segmental Sclerosis Associated with the Novel Multi-tyrosine Kinase Inhibitor Ponatinib: A Case Report. Internal Medicine, advpub. https://www.jstage.jst.go.jp/article/internalmedicine/advpub/0/advpub_1283-22/_article

  75. McCoach CE, Yu A, Gandara DR et al (2021) Phase I/II study of capmatinib plus erlotinib in patients with MET-positive non-small-cell lung cancer. JCO Precis Oncol 1:177–190

    Article  Google Scholar 

  76. Kaneko T, Shimizu A, Aoki M et al (2015) A case of gefitinib-associated membranous nephropathy in treatment for pulmonary adenocarcinoma. CEN Case Reports 4:31–37

    Article  PubMed  Google Scholar 

  77. Maruyama K, Chinda J, Kuroshima T et al (2015) Minimal change nephrotic syndrome associated with gefitinib and a successful switch to erlotinib. Intern Med 54:823–826

    Article  CAS  PubMed  Google Scholar 

  78. Akamatsu H, Toi Y, Hayashi H et al (2021) Efficacy of osimertinib plus bevacizumab vs osimertinib in patients with EGFR T790M–mutated non-small cell lung cancer previously treated with epidermal growth factor receptor-tyrosine kinase inhibitor: west Japan oncology group 8715l phase 2 randomized clinical trial. JAMA Oncol 7:386–394

    Article  PubMed  PubMed Central  Google Scholar 

  79. Calizo RC, Bhattacharya S, van Hasselt JGC et al (2019) Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity. Nat Commun 10:2061

    Article  PubMed  PubMed Central  Google Scholar 

  80. Grossman E, Messerli FH (2008) Secondary hypertension: interfering substances. J Clin Hypertens (Greenwich) 10:556–566

    Article  CAS  PubMed  Google Scholar 

  81. Hamid M, Ghani A, Micaily I et al (2018) Posterior reversible encephalopathy syndrome (PRES) after bevacizumab therapy for metastatic colorectal cancer. J Community Hosp Intern Med Perspect 8:130–133

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qi WX, Shen Z, Lin F et al (2013) Incidence and risk of hypertension with vandetanib in cancer patients: a systematic review and meta-analysis of clinical trials. Br J Clin Pharmacol 75:919–930

    Article  CAS  PubMed  Google Scholar 

  83. Stinchcombe TE, Janne PA, Wang X et al (2019) Effect of erlotinib plus bevacizumab vs erlotinib alone on progression-free survival in patients with advanced EGFR-mutant non-small cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol 5:1448–1455

    Article  PubMed  PubMed Central  Google Scholar 

  84. Tojo A, Kyo T, Yamamoto K et al (2017) Ponatinib in Japanese patients with Philadelphia chromosome-positive leukemia, a phase 1/2 study. Int J Hematol 106:385–397

    Article  CAS  PubMed  Google Scholar 

  85. Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121

    Article  CAS  PubMed  Google Scholar 

  86. Waxman AJ, Clasen S, Hwang WT et al (2018) Carfilzomib-associated cardiovascular adverse events: a systematic review and meta-analysis. JAMA Oncol 4:e174519

    Article  PubMed  Google Scholar 

  87. Dickerson T, Wiczer T, Waller A et al (2019) Hypertension and incident cardiovascular events following ibrutinib initiation. Blood 134:1919–1928

    Article  PubMed  PubMed Central  Google Scholar 

  88. Grellety T, Houédé N, Hoepffner JL et al (2014) Hemorrhagic cystitis in patients treated with cabazitaxel: a radiation recall syndrome? Ann Oncol 25:1248–1249

    Article  CAS  PubMed  Google Scholar 

  89. Gambacorti-Passerini C, Cortes JE, Lipton JH et al (2014) Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol 89:947–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nagai K, Ono H, Matsuura M et al (2018) Progressive renal insufficiency related to ALK inhibitor, alectinib. Oxf Med Case Reports. https://doi.org/10.1093/omcr/omy009

    Article  PubMed  PubMed Central  Google Scholar 

  91. Full prescribing information for ROZLYTREK, FDA approves entrectinib for NTRK solid tumors and ROS-1 NSCLC; https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc. Accessed Feb 2022

Download references

Acknowledgements

This study was supported by Grants-in-Aid for Scientific Research (C) (22K08350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Matsubara.

Ethics declarations

Conflict of interest

MY receives research grants from Mitsubishi Tanabe Pharma and Boehringer Ingelheim. H Yokoi has received research grants from Mitsubishi Tanabe Pharma, and honoraria from AstraZeneca and Mitsubishi Tanabe Pharma. The other authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, T., Yokoi, H., Yamada, H. et al. Nephrotoxicity associated with anticancer agents: perspective on onconephrology from nephrologists. Int J Clin Oncol 28, 625–636 (2023). https://doi.org/10.1007/s10147-023-02307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02307-z

Keywords

Navigation