Skip to main content
Log in

Toward an optimal cadaveric brain model for neurosurgical education: assessment of preservation, parenchyma, vascular injection, and imaging

  • Research
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Objective

We assessed types of cadaveric head and brain tissue specimen preparations that are used in a high throughput neurosurgical research laboratory to determine optimal preparation methods for neurosurgical anatomical research, education, and training.

Methods

Cadaveric specimens (N = 112) prepared using different preservation and vascular injection methods were imaged, dissected, and graded by 11 neurosurgeons using a 21-point scale. We assessed the quality of tissue and preservation in both the anterior and posterior circulations. Tissue quality was evaluated using a 9-point magnetic resonance imaging (MRI) scale.

Results

Formalin-fixed specimens yielded the highest scores for assessment (mean ± SD [17.0 ± 2.8]) vs. formalin-flushed (17.0 ± 3.6) and MRI (6.9 ± 2.0). Cadaver assessment and MRI scores were positively correlated (P < 0.001, R2 0.60). Analysis showed significant associations between cadaver assessment scores and specific variables: nonformalin fixation (β = −3.3), preservation within ≤72 h of death (β = 1.8), and MRI quality score (β = 0.7). Formalin-fixed specimens exhibited greater hardness than formalin-flushed and nonformalin-fixed specimens (P ≤ 0.006). Neurosurgeons preferred formalin-flushed specimens injected with colored latex.

Conclusion

For better-quality specimens for neurosurgical education and training, formalin preservation within ≤72 h of death was preferable, as was injection with colored latex. Formalin-flushed specimens more closely resembled live brain parenchyma. Assessment scores were lower for preparation techniques performed > 72 h postmortem and for nonformalin preservation solutions. The positive correlation between cadaver assessment scores and our novel MRI score indicates that donation organizations and institutional buyers should incorporate MRI as a screening tool for the selection of high-quality specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request and IRB approval, as applicable.

Abbreviations

ANOVA:

analysis of variance

CT:

computed tomography

HRD:

high radiodensity

IFG:

inferior frontal gyrus

kPa:

kilopascal

MRI:

magnetic resonance imaging

R2 :

coefficient of determination

3D:

3-dimensional

References

  1. Balta JY, Cronin M, Cryan JF, O’Mahony SM (2015) Human preservation techniques in anatomy: a 21st century medical education perspective. Clin Anat 28(6):725–734

    Article  PubMed  Google Scholar 

  2. Brenner E (2014) Human body preservation - old and new techniques. J Anat 224(3):316–344

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jubran JH, Houlihan LM, Howshar JT et al (2022) The optimal cadaveric model; a Meta-analysis of Injection, Parenchymal, and preservation techniques in Neuroanatomy. J Neurol Surg B Skull Base 83(S 01):A052

    Google Scholar 

  4. Benet A, Rincon-Torroella J, Lawton MT, Gonzalez Sanchez JJ (2014) Novel embalming solution for neurosurgical simulation in cadavers. J Neurosurg 120(5):1229–1237

    Article  PubMed  Google Scholar 

  5. Budday S, Sommer G, Birkl C et al (2017) Mechanical characterization of human brain tissue. Acta Biomater 48:319–340

    Article  CAS  PubMed  Google Scholar 

  6. Budday S, Sarem M, Starck L et al (2020) Towards microstructure-informed material models for human brain tissue. Acta Biomater 104:53–65

    Article  CAS  PubMed  Google Scholar 

  7. Budday S, Nay R, de Rooij R et al (2015) Mechanical properties of gray and white matter brain tissue by indentation. J Mech Behav Biomed Mater 46:318–330

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shuck LZ, Advani SH (1972) Rheological Response of Human Brain tissue in Shear. J Basic Eng 94(4):905–911

    Article  Google Scholar 

  9. Turner PJ, Holtom DB (1981) The use of a fabric softener in the reconstitution of mummified tissue prior to paraffin wax sectioning for light microscopical examination. Stain Technol 56(1):35–38

    Article  CAS  PubMed  Google Scholar 

  10. Blaney SP, Johnson B (1989) Technique for reconstituting fixed cadaveric tissue. Anat Rec 224(4):550–551

    Article  CAS  PubMed  Google Scholar 

  11. Dolci RLL, Burchianti LC, Todeschini AB et al (2019) Technique for latex injection and reuse of human heads preserved in Formaldehyde. J Neurol Surg B Skull Base 80(3):270–275

    Article  PubMed  Google Scholar 

  12. Crosado B, Loffler S, Ondruschka B et al (2020) Phenoxyethanol-based embalming for anatomy teaching: an 18 years’ experience with Crosado Embalming at the University of Otago in New Zealand. Anat Sci Educ 13(6):778–793

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coleman R, Kogan I (1998) An improved low-formaldehyde embalming fluid to preserve cadavers for anatomy teaching. J Anat 192(Pt 3):443–446

    Article  PubMed  PubMed Central  Google Scholar 

  14. Macdonald GJ, MacGregor DB (1997) Procedures for embalming cadavers for the dissecting laboratory. Proc Soc Exp Biol Med 215(4):363–365

    Article  CAS  PubMed  Google Scholar 

  15. O’Sullivan E, Mitchell BS (1993) An improved composition for embalming fluid to preserve cadavers for anatomy teaching in the United Kingdom. J Anat 182(Pt 2):295–297

    PubMed  PubMed Central  Google Scholar 

  16. Sanan A, Abdel Aziz KM, Janjua RM et al (1999) Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery 45(5):1267–1271 discussion 1271 – 1264

    Article  CAS  PubMed  Google Scholar 

  17. Wineski LE, English AW (1989) Phenoxyethanol as a nontoxic preservative in the dissection laboratory. Acta Anat (Basel) 136(2):155–158

    Article  CAS  PubMed  Google Scholar 

  18. Thiel W (1992) [The preservation of the whole corpse with natural color]. Ann Anat 174(3):185–195

    Article  CAS  PubMed  Google Scholar 

  19. Ottone NE, Vargas CA, Fuentes R, del Sol M (2016) Walter Thiel’s Embalming Method: review of solutions and applications in different fields of Biomedical Research. Int J Morphology 34:1442–1454

    Article  Google Scholar 

  20. Hayashi S, Homma H, Naito M et al (2014) Saturated salt solution method: a useful cadaver embalming for surgical skills training. Medicine (Baltimore) 93(27):e196

    Article  Google Scholar 

  21. Maruyama K, Yokoi H, Nagase M et al (2019) Usefulness of N-vinyl-2-pyrrolidone embalming for endoscopic transnasal Skull Base Approach in Cadaver Dissection. Neurol Med Chir (Tokyo) 59(10):379–383

    Article  PubMed  Google Scholar 

  22. Dziedzic TA, Balasa A, Jezewski MP et al (2021) White matter dissection with the Klingler technique: a literature review. Brain Struct Funct 226(1):13–47

    Article  PubMed  Google Scholar 

  23. Ludwig E, Klingler J (1956) Atlas Cerebri Humani: the inner structure of the brain, 1st edn. Little, Brown and Company, Boston.

  24. Alvernia JE, Pradilla G, Mertens P et al (2010) Latex injection of cadaver heads: technical note. Neurosurgery 67(2 Suppl Operative):362–367

    PubMed  Google Scholar 

  25. Chahla J, Sanchez G, Moatshe G et al (2017) Vascular coloration for anatomical study of the Pelvis and Hip: implications in hip preservation surgery. Arthrosc Tech 6(1):e133–e136

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soubam P, Mishra S, Suri A et al (2018) Standardization of the technique of silicon injection of human cadaveric heads for opacification of cerebral vasculature in Indian conditions. Neurol India 66(2):439–443

    Article  PubMed  Google Scholar 

  27. Limpastan K, Vaniyapong T, Watcharasaksilp W, Norasetthada T (2013) Silicone injected cadaveric head for neurosurgical dissection: prepared from defrosted cadaver. Asian J Neurosurg 8(2):90–92

    Article  PubMed  PubMed Central  Google Scholar 

  28. Groen RJ, Grobbelaar M, Muller CJ et al (2005) Morphology of the human internal vertebral venous plexus: a cadaver study after latex injection in the 21-25-week fetus. Clin Anat 18(6):397–403

    Article  CAS  PubMed  Google Scholar 

  29. Tubbs RS, Ammar K, Liechty P et al (2006) The marginal sinus. J Neurosurg 104(3):429–431

    Article  PubMed  Google Scholar 

  30. Schmidt C, Lorthioir J (1950) [Injection with plastic materials of the different vascular systems]. Arch Mal Coeur Vaiss 43(3):274–278

    CAS  PubMed  Google Scholar 

  31. Tubbs RS, O’Neil JT Jr., Key CD et al (2007) Superficial temporal artery as an external landmark for deeper-lying brain structures. Clin Anat 20(5):498–501

    Article  PubMed  Google Scholar 

  32. Peng TH, Ding HM, Chen SH et al (2009) Demonstration of three injection methods for the analysis of extrinsic and intrinsic blood supply of the peripheral nerve. Surg Radiol Anat 31(8):567–571

    Article  PubMed  Google Scholar 

  33. Doomernik DE, Kruse RR, Reijnen MM et al (2016) A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms. J Anat 229(4):582–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jackowski C, Persson A, Thali MJ (2008) Whole body postmortem angiography with a high viscosity contrast agent solution using poly ethylene glycol as contrast agent dissolver. J Forensic Sci 53(2):465–468

    Article  PubMed  Google Scholar 

  35. Grabherr S, Doenz F, Steger B et al (2011) Multi-phase post-mortem CT angiography: development of a standardized protocol. Int J Legal Med 125(6):791–802

    Article  PubMed  Google Scholar 

  36. Jackowski C, Bolliger S, Aghayev E et al (2006) Reduction of postmortem angiography-induced tissue edema by using polyethylene glycol as a contrast agent dissolver. J Forensic Sci 51(5):1134–1137

    Article  PubMed  Google Scholar 

  37. Tajima Y, Takagi R, Kominato Y, Kuwayama N (2007) A case of iatrogenic cerebral infarction demonstrated by postmortem cerebral angiography. Leg Med (Tokyo) 9(6):326–329

    Article  PubMed  Google Scholar 

  38. Wallace SK, Cohen WA, Stern EJ, Reay DT (1994) Judicial hanging: postmortem radiographic, CT, and MR imaging features with autopsy confirmation. Radiology 193(1):263–267

    Article  CAS  PubMed  Google Scholar 

  39. Karhunen PJ, Kauppila R, Penttila A, Erkinjuntti T (1990) Vertebral artery rupture in traumatic subarachnoid haemorrhage detected by postmortem angiography. Forensic Sci Int 44(2–3):107–115

    Article  CAS  PubMed  Google Scholar 

  40. van Eijk RP, van der Zwan A, Bleys RL et al (2015) Novel application of Postmortem CT Angiography for evaluation of the intracranial vascular anatomy in cadaver heads. AJR Am J Roentgenol 205(6):1276–1280

    Article  PubMed  Google Scholar 

  41. Karhunen PJ, Servo A (1993) Sudden fatal or non-operable bleeding from ruptured intracranial aneurysm. Evaluation by post-mortem angiography with vulcanising contrast medium. Int J Legal Med 106(2):55–59

    Article  CAS  PubMed  Google Scholar 

  42. Grabherr S, Djonov V, Yen K et al (2007) Postmortem angiography: review of former and current methods. AJR Am J Roentgenol 188(3):832–838

    Article  PubMed  Google Scholar 

  43. Ross S, Spendlove D, Bolliger S et al (2008) Postmortem whole-body CT angiography: evaluation of two contrast media solutions. AJR Am J Roentgenol 190(5):1380–1389

    Article  PubMed  Google Scholar 

  44. Bhargava A, Monteagudo B, Kushwaha P et al (2022) VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology. Nat Methods 19(2):242–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. James JL, Tongpob Y, Srinivasan V et al (2021) Three-dimensional visualisation of the feto-placental vasculature in humans and rodents. Placenta 114:8–13

    Article  CAS  PubMed  Google Scholar 

  46. Lewis S, Inglis S, Wainman B, Doyle S (2020) Quantitative evaluation of cadaveric contrast agents: identifying anatomical structures with BriteVu. SPIE

  47. D’Arceuil HE, Westmoreland S, de Crespigny AJ (2007) An approach to high resolution diffusion tensor imaging in fixed primate brain. NeuroImage 35(2):553–565

    Article  PubMed  Google Scholar 

  48. Shatil AS, Uddin MN, Matsuda KM, Figley CR (2018) Quantitative Ex vivo MRI changes due to Progressive Formalin fixation in whole human brain specimens: longitudinal characterization of Diffusion, Relaxometry, and myelin water fraction measurements at 3T. Front Med (Lausanne) 5:31

    Article  PubMed  Google Scholar 

  49. Dawe RJ, Bennett DA, Schneider JA et al (2009) Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn Reson Med 61(4):810–818

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tovi M, Ericsson A (1992) Measurements of T1 and T2 over time in formalin-fixed human whole-brain specimens. Acta Radiol 33(5):400–404

    Article  CAS  PubMed  Google Scholar 

  51. Yong-Hing CJ, Obenaus A, Stryker R et al (2005) Magnetic resonance imaging and mathematical modeling of progressive formalin fixation of the human brain. Magn Reson Med 54(2):324–332

    Article  PubMed  Google Scholar 

  52. Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ (2009) Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62(1):26–34

    Article  PubMed  PubMed Central  Google Scholar 

  53. Birkl C, Langkammer C, Golob-Schwarzl N et al (2016) Effects of formalin fixation and temperature on MR relaxation times in the human brain. NMR Biomed 29(4):458–465

    Article  CAS  PubMed  Google Scholar 

  54. Birkl C, Langkammer C, Haybaeck J et al (2014) Temperature-induced changes of magnetic resonance relaxation times in the human brain: a postmortem study. Magn Reson Med 71(4):1575–1580

    Article  PubMed  Google Scholar 

  55. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448

    Article  CAS  PubMed  Google Scholar 

  56. Miller KL, Stagg CJ, Douaud G et al (2011) Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. NeuroImage 57(1):167–181

    Article  PubMed  Google Scholar 

  57. Shepherd TM, Flint JJ, Thelwall PE et al (2009) Postmortem interval alters the water relaxation and diffusion properties of rat nervous tissue–implications for MRI studies of human autopsy samples. NeuroImage 44(3):820–826

    Article  PubMed  Google Scholar 

  58. Matubayasi N, Nakahara M (2005) Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium. J Chem Phys 122(7):074509

    Article  PubMed  Google Scholar 

  59. Metz B, Kersten GF, Hoogerhout P et al (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243

    Article  CAS  PubMed  Google Scholar 

  60. Kennan RP, Richardson KA, Zhong J et al (1996) The effects of cross-link density and chemical exchange on magnetization transfer in polyacrylamide gels. J Magn Reson B 110(3):267–277

    Article  CAS  PubMed  Google Scholar 

  61. Houlihan LM, Staudinger Knoll AJ, Jubran JH et al (2021) Nancy Davis Reagan, First Lady with a neurosurgical legacy. World Neurosurg 155:64–73

    Article  PubMed  Google Scholar 

  62. Mignucci-Jimenez G, Xu Y, Houlihan LM et al (2022) Analyzing international medical graduate research productivity for application to US neurosurgery residency and beyond: a survey of applicants, program directors, and institutional experience. Front Surg 9:899649

    Article  PubMed  PubMed Central  Google Scholar 

  63. Loymak T, Tungsanga S, Abramov I et al (2022) Extradural anterior clinoidectomy versus endoscopic transplanum-transcavernous approach to the paraclinoid region: quantitative anatomical exposure analysis. Acta Neurochir (Wien) 164(4):1055–1067

    Article  PubMed  Google Scholar 

  64. Hanalioglu S, Romo NG, Mignucci-Jimenez G et al (2022) Development and validation of a Novel Methodological Pipeline to integrate neuroimaging and photogrammetry for immersive 3D Cadaveric Neurosurgical Simulation. Front Surg 9:878378

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gonzalez-Romo NI, Hanalioglu S, Mignucci-Jimenez G et al (2023) Anatomic depth estimation and 3-Dimensional Reconstruction of Microsurgical anatomy using Monoscopic High-Definition Photogrammetry and Machine Learning. Oper Neurosurg (Hagerstown) 24(4):432–444

    Article  PubMed  Google Scholar 

  66. Gurses ME, Hanalioglu S, Mignucci-Jimenez G et al (2023) Three-Dimensional modeling and extended reality simulations of the cross-sectional anatomy of the Cerebrum, Cerebellum, and Brainstem. Oper Neurosurg (Hagerstown) 25(1):3–10

    Article  PubMed  Google Scholar 

  67. Cavalcanti DD, Figueiredo EG, Preul MC, Spetzler RF (2019) Anatomical and objective evaluation of the Main Surgical approaches to Pontine Intra-axial lesions. World Neurosurg 121:e207–e214

    Article  PubMed  Google Scholar 

  68. Houlihan LM, Naughton D, O’Sullivan MGJ et al (2022) Toward bigger data for neurosurgical anatomical research: a single centralized quantitative neurosurgical anatomy platform. Neurosurg Rev 46(1):22

    Article  PubMed  Google Scholar 

  69. Hanalioglu S, Mignucci-Jiménez G, Fuentes A, Mathew E, Bahadir S, Turner G, Preul MC (2023) 7T MR DTI and Tractography of a 1-Week Postmortem Fixed Human Brainstem-Cerebellum: Novel Imaging Methodology Producing Extraordinary Images, Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine. Toronto, Canada

  70. Gonzalez-Romo NI, Mignucci-Jimenez G, Hanalioglu S et al (2023) Virtual neurosurgery anatomy laboratory: a collaborative and remote education experience in the metaverse. Surg Neurol Int 14:90

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of Neuroscience Publications at Barrow Neurological Institute for assistance with manuscript preparation. This study was presented in part at the 2022 Congress of Neurological Surgeons Annual Meeting in San Francisco, CA (October 8-12, 2022).

Funding

This study was funded by the Newsome Chair in Neurosurgery Research held by Dr. Preul and the Barrow Neurological Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MCP, LMH, GMJ, MTL. Data curation: GMJ, YX, IA, LMH, RR, SH. Formal analysis: GMJ, YX, LMH, GK. Funding acquisition: Investigation: Methodology: MCP, LMH, GMJ. Project administration: Resources: Software: Supervision: MCP. Validation: Visualization: Roles/Writing - original draft: GMJ, YX, GK, ATM, MCP. Writing - review & editing: MCP, MTL, TJO.

Corresponding author

Correspondence to Mark C. Preul.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Disclosures

The authors have no personal, financial, or institutional interest in any of the drugs, materials, or devices described in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mignucci-Jiménez, G., Xu, Y., On, T.J. et al. Toward an optimal cadaveric brain model for neurosurgical education: assessment of preservation, parenchyma, vascular injection, and imaging. Neurosurg Rev 47, 190 (2024). https://doi.org/10.1007/s10143-024-02363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10143-024-02363-7

Keywords

Navigation