Skip to main content
Log in

The supplementary motor area syndrome: a neurosurgical review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The supplementary motor area (SMA) syndrome is a frequently encountered clinical phenomenon associated with surgery of the dorsomedial prefrontal lobe. The region has a known motor sequencing function and the dominant pre-SMA specifically is associated with more complex language functions; the SMA is furthermore incorporated in the negative motor network. The SMA has a rich interconnectivity with other cortical regions and subcortical structures using the frontal aslant tract (FAT) and the frontostriatal tract (FST). The development of the SMA syndrome is positively correlated with the extent of resection of the SMA region, especially its medial side. This may be due to interruption of the nearby callosal association fibres as the contralateral SMA has a particular important function in brain plasticity after SMA surgery. The syndrome is characterized by a profound decrease in interhemispheric connectivity of the motor network hubs. Clinical improvement is related to increasing connectivity between the contralateral SMA region and the ipsilateral motor hubs. Overall, most patients know a full recovery of the SMA syndrome, however a minority of patients might continue to suffer from mild motor and speech dysfunction. Rarely, no recovery of neurological function after SMA region resection is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Acioly MA, Cunha AM, Parise M, Rodrigues E, Tovar-Moll F (2015) Recruitment of contralateral supplementary motor area in functional recovery following medial frontal lobe surgery: an fMRI case study. J Neurol Surg A Cent Eur Neurosurg 76(6):508–512. https://doi.org/10.1055/s-0035-1558408

    Article  PubMed  Google Scholar 

  2. Baker CM, Burks JD, Briggs RG, Smitherman AD, Glenn CA, Conner AK et al (2018) The crossed frontal aslant tract: a possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav 8(3):e00926. https://doi.org/10.1002/brb3.926

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B et al (2016) Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurg 95:99–107. https://doi.org/10.1016/j.wneu.2016.07.072

    Article  PubMed  Google Scholar 

  4. Briggs RG, Khan AB, Chakraborty AR, Abraham CJ, Anderson CD, Karas PJ et al (2020) Anatomy and white matter connections of the superior frontal gyrus. Clin Anat (New York, NY) 33(6):823–832. https://doi.org/10.1002/ca.23523

    Article  Google Scholar 

  5. Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P et al (2012) Short frontal lobe connections of the human brain. Cortex 48(2):273–291. https://doi.org/10.1016/j.cortex.2011.12.001

    Article  PubMed  Google Scholar 

  6. Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C et al (2013) A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136(Pt 8):2619–2628. https://doi.org/10.1093/brain/awt163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chainay H, Francois-Xaxier A, Alexandre K, Hugues D, Laurent C, Emmanuelle V et al (2009) Motor and language deficits before and after surgical resection of mesial frontal tumour. Clin Neurol Neurosurg 111(1):39–46. https://doi.org/10.1016/j.clineuro.2008.07.004

    Article  PubMed  Google Scholar 

  8. Chang EF, Raygor KP, Berger MS (2015) Contemporary model of language organization: an overview for neurosurgeons. J Neurosurg 122(2):250–261. https://doi.org/10.3171/2014.10.JNS132647

    Article  PubMed  Google Scholar 

  9. Chernoff BL, Teghipco A, Garcea FE, Sims MH, Paul DA, Tivarus ME et al (2018) A role for the frontal aslant tract in speech planning: a neurosurgical case study. J Cogn Neurosci 30(5):752–769. https://doi.org/10.1162/jocn_a_01244

    Article  PubMed  Google Scholar 

  10. Chivukula S, Pikul BK, Black KL, Pouratian N, Bookheimer SY (2018) Contralateral functional reorganization of the speech supplementary motor area following neurosurgical tumor resection. Brain Lang 183:41–46. https://doi.org/10.1016/j.bandl.2018.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cona G, Semenza C (2017) Supplementary motor area as key structure for domain-general sequence processing: a unified account. Neurosci Biobehav Rev 72:28–42. https://doi.org/10.1016/j.neubiorev.2016.10.033

    Article  PubMed  Google Scholar 

  12. De Benedictis A, Duffau H (2011) Brain hodotopy: from esoteric concept to practical surgical applications. Neurosurgery 68(6):1709–1723; discussion 23. https://doi.org/10.1227/NEU.0b013e3182124690

  13. Dick AS, Garic D, Graziano P, Tremblay P (2019) The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex 111:148–163. https://doi.org/10.1016/j.cortex.2018.10.015

    Article  PubMed  Google Scholar 

  14. Duffau H (2008) The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography. Neuropsychologia 46(4):927–934. https://doi.org/10.1016/j.neuropsychologia.2007.10.025

    Article  PubMed  Google Scholar 

  15. Duffau H (2020) Functional mapping before and after low-grade glioma surgery: a new way to decipher various spatiotemporal patterns of individual neuroplastic potential in brain tumor patients. Cancers 12(9). https://doi.org/10.3390/cancers12092611

  16. Duffau H, Capelle L (2004) Preferential brain locations of low-grade gliomas. Cancer 100(12):2622–2626. https://doi.org/10.1002/cncr.20297

    Article  PubMed  Google Scholar 

  17. Duffau H, Lopes M, Denvil D, Capelle L (2001) Delayed onset of the supplementary motor area syndrome after surgical resection of the mesial frontal lobe: a time course study using intraoperative mapping in an awake patient. Stereotact Funct Neurosurg 76(2):74–82. https://doi.org/10.1159/000056496

    Article  CAS  PubMed  Google Scholar 

  18. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez JP et al (2002) Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain 125(Pt 1):199–214. https://doi.org/10.1093/brain/awf016

    Article  PubMed  Google Scholar 

  19. Endo Y, Saito Y, Otsuki T, Takahashi A, Nakata Y, Okada K et al (2014) Persistent verbal and behavioral deficits after resection of the left supplementary motor area in epilepsy surgery. Brain Develop 36(1):74–79. https://doi.org/10.1016/j.braindev.2013.01.002

    Article  Google Scholar 

  20. Filevich E, Kuhn S, Haggard P (2012) Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action. Cortex 48(10):1251–1261. https://doi.org/10.1016/j.cortex.2012.04.014

    Article  PubMed  Google Scholar 

  21. Florman JE, Duffau H, Rughani AI (2013) Lower motor neuron findings after upper motor neuron injury: insights from postoperative supplementary motor area syndrome. Front Hum Neurosci 7:85. https://doi.org/10.3389/fnhum.2013.00085

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fontaine D, Capelle L, Duffau H (2002) Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery 50(2):297–303; discussion -5. https://doi.org/10.1097/00006123-200202000-00011

  23. Fried I, Katz A, McCarthy G, Sass KJ, Williamson P, Spencer SS et al (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J Neurosci 11(11):3656–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Frigeri T, Paglioli E, de Oliveira E, Rhoton AL Jr (2015) Microsurgical anatomy of the central lobe. J Neurosurg 122(3):483–498. https://doi.org/10.3171/2014.11.JNS14315

    Article  PubMed  Google Scholar 

  25. Fujii M, Maesawa S, Motomura K, Futamura M, Hayashi Y, Koba I et al (2015) Intraoperative subcortical mapping of a language-associated deep frontal tract connecting the superior frontal gyrus to Broca’s area in the dominant hemisphere of patients with glioma. J Neurosurg 122(6):1390–1396. https://doi.org/10.3171/2014.10.JNS14945

    Article  PubMed  Google Scholar 

  26. Ibe Y, Tosaka M, Horiguchi K, Sugawara K, Miyagishima T, Hirato M et al (2016) Resection extent of the supplementary motor area and post-operative neurological deficits in glioma surgery. Br J Neurosurg 30(3):323–329. https://doi.org/10.3109/02688697.2015.1133803

    Article  PubMed  Google Scholar 

  27. Jenabi M, Peck KK, Young RJ, Brennan N, Holodny AI (2014) Probabilistic fiber tracking of the language and motor white matter pathways of the supplementary motor area (SMA) in patients with brain tumors. J Neuroradiol 41(5):342–349. https://doi.org/10.1016/j.neurad.2013.12.001

    Article  PubMed  Google Scholar 

  28. Kasasbeh AS, Yarbrough CK, Limbrick DD, Steger-May K, Leach JL, Mangano FT et al (2012) Characterization of the supplementary motor area syndrome and seizure outcome after medial frontal lobe resections in pediatric epilepsy surgery. Neurosurgery 70(5):1152–1168; discussion 68. https://doi.org/10.1227/NEU.0b013e31823f6001

  29. Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G et al (2016) Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol 263(1):157–167. https://doi.org/10.1007/s00415-015-7949-3

    Article  PubMed  Google Scholar 

  30. Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST et al (2010) Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method. Neuroimage 49(3):2375–2386. https://doi.org/10.1016/j.neuroimage.2009.10.016

    Article  PubMed  Google Scholar 

  31. Kim YH, Kim CH, Kim JS, Lee SK, Han JH, Kim CY et al (2013) Risk factor analysis of the development of new neurological deficits following supplementary motor area resection. J Neurosurg 119(1):7–14. https://doi.org/10.3171/2013.3.JNS121492

    Article  PubMed  Google Scholar 

  32. Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H (2015) Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct 220(6):3399–3412. https://doi.org/10.1007/s00429-014-0863-0

    Article  PubMed  Google Scholar 

  33. Krainik A, Lehericy S, Duffau H, Vlaicu M, Poupon F, Capelle L et al (2001) Role of the supplementary motor area in motor deficit following medial frontal lobe surgery. Neurology 57(5):871–878. https://doi.org/10.1212/wnl.57.5.871

    Article  CAS  PubMed  Google Scholar 

  34. Krainik A, Lehericy S, Duffau H, Capelle L, Chainay H, Cornu P et al (2003) Postoperative speech disorder after medial frontal surgery: role of the supplementary motor area. Neurology 60(4):587–594. https://doi.org/10.1212/01.wnl.0000048206.07837.59

    Article  CAS  PubMed  Google Scholar 

  35. Krainik A, Duffau H, Capelle L, Cornu P, Boch AL, Mangin JF et al (2004) Role of the healthy hemisphere in recovery after resection of the supplementary motor area. Neurology 62(8):1323–1332. https://doi.org/10.1212/01.wnl.0000120547.83482.b1

    Article  CAS  PubMed  Google Scholar 

  36. Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo JM (1977) Clinical consequences of corticectomies involving the supplementary motor area in man. J Neurol Sci 34(3):301–314. https://doi.org/10.1016/0022-510x(77)90148-4

    Article  CAS  PubMed  Google Scholar 

  37. Lim SH, Dinner DS, Pillay PK, Luders H, Morris HH, Klem G et al (1994) Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr Clin Neurophysiol 91(3):179–193. https://doi.org/10.1016/0013-4694(94)90068-x

    Article  CAS  PubMed  Google Scholar 

  38. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN (2002) Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex (New York, NY : 1991) 12(3):281–296. https://doi.org/10.1093/cercor/12.3.281

    Article  CAS  Google Scholar 

  39. Mayer AR, Zimbelman JL, Watanabe Y, Rao SM (2001) Somatotopic organization of the medial wall of the cerebral hemispheres: a 3 Tesla fMRI study. NeuroReport 12(17):3811–3814. https://doi.org/10.1097/00001756-200112040-00042

    Article  CAS  PubMed  Google Scholar 

  40. Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474. https://doi.org/10.1016/j.neuroimage.2006.02.004

    Article  PubMed  Google Scholar 

  41. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869. https://doi.org/10.1038/nrn2478

    Article  CAS  PubMed  Google Scholar 

  42. Nakajima R, Kinoshita M, Yahata T, Nakada M (2019) Recovery time from supplementary motor area syndrome: relationship to postoperative day 7 paralysis and damage of the cingulum. J Neurosurg 1–10. https://doi.org/10.3171/2018.10.JNS182391

  43. Oda K, Yamaguchi F, Enomoto H, Higuchi T, Morita A (2018) Prediction of recovery from supplementary motor area syndrome after brain tumor surgery: preoperative diffusion tensor tractography analysis and postoperative neurological clinical course. Neurosurg Focus 44(6):E3. https://doi.org/10.3171/2017.12.FOCUS17564

    Article  PubMed  Google Scholar 

  44. Otten ML, Mikell CB, Youngerman BE, Liston C, Sisti MB, Bruce JN et al (2012) Motor deficits correlate with resting state motor network connectivity in patients with brain tumours. Brain 135(Pt 4):1017–1026. https://doi.org/10.1093/brain/aws041

    Article  PubMed  PubMed Central  Google Scholar 

  45. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ (Clin Res Ed) 372:n160. https://doi.org/10.1136/bmj.n160

    Article  Google Scholar 

  46. Quirarte JA, Kumar VA, Liu HL, Noll KR, Wefel JS, Lang FF (2020) Language supplementary motor area syndrome correlated with dynamic changes in perioperative task-based functional MRI activations: case report. J Neurosurg 1–5. https://doi.org/10.3171/2020.4.JNS193250

  47. Rech F, Herbet G, Gaudeau Y, Mezieres S, Moureau JM, Moritz-Gasser S et al (2019) A probabilistic map of negative motor areas of the upper limb and face: a brain stimulation study. Brain 142(4):952–965. https://doi.org/10.1093/brain/awz021

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ropper AH, Samuels MA, Klein JP (2014) Disorders of motility. In: Adams and Victor’s principles of neurology, 10th edn. McGraw-Hill Education, New York, pp 43–44

  49. Rosenberg K, Nossek E, Liebling R, Fried I, Shapira-Lichter I, Hendler T et al (2010) Prediction of neurological deficits and recovery after surgery in the supplementary motor area: a prospective study in 26 patients. J Neurosurg 113(6):1152–1163. https://doi.org/10.3171/2010.6.JNS1090

    Article  PubMed  Google Scholar 

  50. Russell SM, Kelly PJ (2003) Incidence and clinical evolution of postoperative deficits after volumetric stereotactic resection of glial neoplasms involving the supplementary motor area. Neurosurgery 52(3):506–516; discussiom 15–6. https://doi.org/10.1227/01.neu.0000047670.56996.53

  51. Sailor J, Meyerand ME, Moritz CH, Fine J, Nelson L, Badie B et al (2003) Supplementary motor area activation in patients with frontal lobe tumors and arteriovenous malformations. AJNR Am J Neuroradiol 24(9):1837–1842

    PubMed  PubMed Central  Google Scholar 

  52. Samuel N, Hanak B, Ku J, Moghaddamjou A, Mathieu F, Moharir M et al (2020) Postoperative isolated lower extremity supplementary motor area syndrome: case report and review of the literature. Child’s Nerv Syst 36(1):189–195. https://doi.org/10.1007/s00381-019-04362-2

    Article  Google Scholar 

  53. Shima K, Tanji J (1998) Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J Neurophysiol 80(6):3247–3260. https://doi.org/10.1152/jn.1998.80.6.3247

    Article  CAS  PubMed  Google Scholar 

  54. Sjoberg RL (2021) Free will and neurosurgical resections of the supplementary motor area: a critical review. Acta Neurochir. https://doi.org/10.1007/s00701-021-04748-9

    Article  PubMed  Google Scholar 

  55. Sughrue ME (2019) White matter anatomy of the cerebrum. In: The glioma book, 1st edn. Thieme, New York, pp 45–73

  56. Talairach J, Bancaud J (1966) The supplementary motor area in man. (Anatomofunctional findings by stereo-electroencephalography in epilepsy). Int J Neurol 5:330–347

    Google Scholar 

  57. Tate MC, Kim CY, Chang EF, Polley MY, Berger MS (2011) Assessment of morbidity following resection of cingulate gyrus gliomas. Clinical article. J Neurosurg 114(3):640–647. https://doi.org/10.3171/2010.9.JNS10709

    Article  PubMed  Google Scholar 

  58. Toma K, Honda M, Hanakawa T, Okada T, Fukuyama H, Ikeda A et al (1999) Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J Neurosci 19(9):3527–3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Vassal F, Boutet C, Lemaire JJ, Nuti C (2014) New insights into the functional significance of the frontal aslant tract: an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br J Neurosurg 28(5):685–687. https://doi.org/10.3109/02688697.2014.889810

    Article  PubMed  Google Scholar 

  60. Vassal M, Charroud C, Deverdun J, Le Bars E, Molino F, Bonnetblanc F et al (2017) Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. J Neurosurg 126(4):1181–1190. https://doi.org/10.3171/2016.4.JNS152484

    Article  PubMed  Google Scholar 

  61. Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P et al (2014) White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry 85(12):1377–1385. https://doi.org/10.1136/jnnp-2013-307492

    Article  PubMed  Google Scholar 

  62. Vorobiev V, Govoni P, Rizzolatti G, Matelli M, Luppino G (1998) Parcellation of human mesial area 6: cytoarchitectonic evidence for three separate areas. Eur J Neurosci 10(6):2199–2203. https://doi.org/10.1046/j.1460-9568.1998.00236.x

    Article  CAS  PubMed  Google Scholar 

  63. Young JS, Morshed RA, Mansoori Z, Cha S, Berger MS (2020) Disruption of frontal aslant tract is not associated with long-term postoperative language deficits. World Neurosurg 133:192–195. https://doi.org/10.1016/j.wneu.2019.09.128

    Article  PubMed  Google Scholar 

  64. Zentner J, Hufnagel A, Pechstein U, Wolf HK, Schramm J (1996) Functional results after resective procedures involving the supplementary motor area. J Neurosurg 85(4):542–549. https://doi.org/10.3171/jns.1996.85.4.0542

    Article  CAS  PubMed  Google Scholar 

  65. Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M et al (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

H. Pinson – literature search, writing manuscript.

J. Van Lerbeirghe – writing manuscript, proof reading.

D. Vanhauwaert – writing manuscript, proof reading.

O. Van Damme – literature search.

G. Hallaert – writing manuscript, proof reading.

JP. Kalala – proof reading.

Corresponding author

Correspondence to Harry Pinson.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Search string used in PubMed:

  1. 1.

    Humans

  2. 2.

    Brain Neoplasms/surgery

  3. 3.

    Glioma/surgery

  4. 4.

    Motor cortex/surgery

  5. 5.

    Prefrontal Cortex/surgery

  6. 6.

    Brain Mapping

  7. 7.

    Electric Stimulation

  8. 8.

    2 or 3 or 4 or 5 or 6 or 7

  9. 9.

    1 and 8

  10. 10.

    Neurosurgical Procedures/adverse effects

  11. 11.

    Postoperative Complications

  12. 12.

    Recovery of Function/physiology

  13. 13.

    Speech

  14. 14.

    Speech disorders

  15. 15.

    Mutism

  16. 16.

    Motor Skills Disorders

  17. 17.

    Movement

  18. 18.

    Paresis

  19. 19.

    Sensation

  20. 20.

    Psychomotor Performance.

  21. 21.

    10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20

  22. 22.

    9 and 21

Search string used in Embase:

  1. 1.

    Human

  2. 2.

    Neurosurgery

  3. 3.

    Glioma

  4. 4.

    Motor Cortex

  5. 5.

    Electrostimulation

  6. 6.

    2 or 3 or 4 or 5

  7. 7.

    1 and 6

  8. 8.

    Neurological Complication

  9. 9.

    Postoperative Complication

  10. 10.

    Functional Connectivity

  11. 11.

    Motor Dysfunction

  12. 12.

    Motor Performance

  13. 13.

    Paralysis

  14. 14.

    Supplementary Motor Area Syndrome

  15. 15.

    Speech Disorder

  16. 16.

    Speech

  17. 17.

    Language

  18. 18.

    Functional Status.

  19. 19.

    8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18

  20. 20.

    7 and 19

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinson, H., Van Lerbeirghe, J., Vanhauwaert, D. et al. The supplementary motor area syndrome: a neurosurgical review. Neurosurg Rev 45, 81–90 (2022). https://doi.org/10.1007/s10143-021-01566-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-021-01566-6

Keywords

Navigation