Skip to main content

Advertisement

Log in

Vascular hyperpermeability as a hallmark of phacomatoses: is the etiology angiogenesis comparable with mechanisms seen in inflammatory pathways? Part I: historical observations and clinical perspectives on the etiology of increased CSF protein levels, CSF clotting, and communicating hydrocephalus: a comprehensive review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Phacomatoses are a special group of familial hamartomatous syndromes with unique neuro-cutaneous manifestations as well as disease characteristic tumors. Neurofibromatosis 2 (NF2) and tuberous sclerosis complex (TSC) are representatives of this family. Vestibular schwannoma (VS) and subependymal giant cell tumor (SGCT) are two of the most common intracranial tumors associated with NF2 and TSC, respectively. These tumors can present with obstructive hydrocephalus due to their location adjacent to or in the ventricles. However, both tumors are also known to have a unique association with an elevated protein concentration in the cerebrospinal fluid (CSF), sometimes in association with non-obstructive (communicating) hydrocephalus (HCP), the causality of which has been unclear. Furthermore, SGCTs have repeatedly been shown to have a predisposition for CSF clotting, causing debilitating obstructions and recurrent malfunctions in shunted patients. However, the exact relation between high protein levels and spontaneous clotting of the CSF is not clear, nor is the mechanism understood by which CSF may clot in SGCTs. Elevated protein levels in the CSF are thought to be caused by increased vascular permeability and dysregulation of the blood–brain barrier. The two presumed underlying pathophysiologic mechanisms for that, in the context of tumorigenesis, are angiogenesis and inflammation. Both mechanisms are correlated to the Pi3K/Akt/mTOR pathway which is a major tumorigenesis pathway in nearly all phacomatoses. In this review, we discuss the influence of angiogenesis and inflammation on vascular permeability in VSs and SGCTs at the phenotypic level as well as their possible genetic and molecular determinants. Part I describes the historical perspectives and clinical aspects of the relationship between vascular permeability, abnormal CSF protein levels, clotting of the CSF, and communicating HCP. Part II describes different cellular and molecular pathways involved in angiogenesis and inflammation in these two tumors and the correlation between inflammation and coagulation. Interestingly, while increased angiogenesis can be observed in both VS and SGCT, inflammatory processes seem more prominent in SGCT. Both pathologies are characterized by different subgroups of tumor-associated macrophages (TAM): the pro-inflammatory, M1 type is predominating in SGCTs while pro-angiogenetic, M2 type is predominating in VSs. We suggest that lack of NF2 protein in VS and lack of TSC1/2 proteins in SGCT determine this fundamental difference between the two tumor types, by defining the predominant TAM type. Since inflammatory reactions and coagulation processes are tightly connected, a “pro-inflammatory state” of SGCT can be used to explain the observed associated enhanced CSF clotting process. These distinct cellular and molecular differences may have direct therapeutic implications on tumors that are unique to certain phacomatoses or those with similar genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

(c)HCP:

(Communicating) hydrocephalus

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

EC:

Endothelial cell

eNOS:

Endothelial nitric oxide synthase

HGB:

Hemangioblastoma

ICP:

Intracranial pressure

mTOR:

Mammalian target of rapamycin

NF:

Neurofibromatosis

NO:

Nitric oxide

Pi3K:

Phosphatidylinositol-3-kinase

SGCT:

Subependymal giant cell tumor

TSC:

Tuberous sclerosis complex

VEGF:

Vascular endothelial growth factor

vHL:

von Hippel–Lindau

VPS:

Ventriculoperitoneal shunt

VS:

Vestibular schwannoma

References

  1. Abbott NJ (2000) Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol 20:131–147

    Article  PubMed  CAS  Google Scholar 

  2. Adams RA, Passino M, Sachs BD, Nuriel T, Akassoglou K (2004) Fibrin mechanisms and functions in nervous system pathology. Mol Interv 4:163–176

    PubMed  CAS  Google Scholar 

  3. Adkins JN, Varnum SM, Auberry KJ, Moore RJ, Angell NH, Smith RD, Springer DL, Pounds JG (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 1:947–955

    Article  PubMed  CAS  Google Scholar 

  4. Adriaensen ME, Schaefer-Prokop CM, Stijnen T, Duyndam DA, Zonnenberg BA, Prokop M (2009) Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16:691–696. doi:10.1111/j.1468-1331.2009.02567.x

    Article  PubMed  CAS  Google Scholar 

  5. Akimoto J, Fukuhara H, Suda T, Nagai K, Hashimoto R, Michihiro K (2014) Disseminated cerebellar hemangioblastoma in two patients without von Hippel-Lindau disease. Surg Neurol Int 5:2152–7806

    Article  Google Scholar 

  6. Al Hinai Q, Zeitouni A, Sirhan D, Sinclair D, Melancon D, Richardson J, Leblanc R (2013) Communicating hydrocephalus and vestibular schwannomas: etiology, treatment, and long-term follow-up. J Neurol Surg B Skull Base 74:68–74. doi:10.1055/s-0033-1333621

    Article  PubMed  PubMed Central  Google Scholar 

  7. Amlashi SF, Riffaud L, Morandi X (2006) Communicating hydrocephalus and papilloedema associated with intraspinal tumours: report of four cases and review of the mechanisms. Acta Neurol Belg 106:31–36

    PubMed  Google Scholar 

  8. Antonescu CR SB, Woodruff JM (2013) Schwannoma. Tumors of the peripheral nervous system, AFIP atlas of tumor pathology series 4. American Registry of Pathology, City, pp 129–210

  9. Arbiser JL, Brat D, Hunter S, D’Armiento J, Henske EP, Arbiser ZK, Bai X, Goldberg G, Cohen C, Weiss SW (2002) Tuberous sclerosis-associated lesions of the kidney, brain, and skin are angiogenic neoplasms. J Am Acad Dermatol 46:376–380

    Article  PubMed  Google Scholar 

  10. Arienta C, Caroli M, Crotti FM (1988) Subarachnoid haemorrhage due to acoustic neurinoma. Case report and review of the literature. Neurochirurgia (Stuttg) 31:162–165

    CAS  Google Scholar 

  11. Atlas MD, Perez de Tagle JR, Cook JA, Sheehy JP, Fagan PA (1996) Evolution of the management of hydrocephalus associated with acoustic neuroma. Laryngoscope 106:204–206

    Article  PubMed  CAS  Google Scholar 

  12. Baggenstos MA, Butman JA, Oldfield EH, Lonser RR (2007) Role of edema in peritumoral cyst formation. Neurosurg Focus 22:E9

    Article  PubMed  Google Scholar 

  13. Bergquist BJ (1988) Intraspinal tumor with hydrocephalus. Neurosurgery 22:969–970

    Article  PubMed  CAS  Google Scholar 

  14. Bloch J, Vernet O, Aube M, Villemure JG (2003) Non-obstructive hydrocephalus associated with intracranial schwannomas: hyperproteinorrhachia as an etiopathological factor? Acta Neurochir 145:73–78

    Article  PubMed  CAS  Google Scholar 

  15. Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WG, van Rijen PC, Wittink FR, Breit TM, Troost D et al (2010) Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol 20:704–719. doi:10.1111/j.1750-3639.2009.00341.x

    Article  PubMed  CAS  Google Scholar 

  16. Boer K, Jansen F, Nellist M, Redeker S, van den Ouweland AM, Spliet WG, van Nieuwenhuizen O, Troost D, Crino PB, Aronica E (2008) Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Epilepsy Res 78:7–21.

    Article  PubMed  CAS  Google Scholar 

  17. Borgesen SE, Sorensen SC, Olesen J, Gjerris F (1977) Spinal tumours associated with increased intracranial pressure. Report of two cases and a discussion on the pathophysiology. Acta Neurol Scand 56:263–268

    Article  PubMed  CAS  Google Scholar 

  18. Bradley WG (2000) Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol 21:1586–1590

    PubMed  CAS  Google Scholar 

  19. Briggs RJ, Shelton C, Kwartler JA, Hitselberger W (1993) Management of hydrocephalus resulting from acoustic neuromas. Otolaryngol Head Neck Surg 109:1020–1024

    Article  PubMed  CAS  Google Scholar 

  20. Brightman MW, Klatzo I, Olsson Y, Reese TS (1970) The blood-brain barrier to proteins under normal and pathological conditions. J Neurol Sci 10:215–239

    Article  PubMed  CAS  Google Scholar 

  21. Brugarolas J, Kaelin WG Jr (2004) Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6:7–10

    Article  PubMed  CAS  Google Scholar 

  22. Brydon HL, Hayward R, Harkness W, Bayston R (1995) Physical properties of cerebrospinal fluid of relevance to shunt function. 1: the effect of protein upon CSF viscosity. Br J Neurosurg 9:639–644

    Article  PubMed  CAS  Google Scholar 

  23. Celli P, Cervoni L, Morselli E, Ferrante L (1993) Spinal ependymomas and papilledema: report of 4 cases and review of the literature. J Neurosurg Sci 37:97–102

    PubMed  CAS  Google Scholar 

  24. Claesson-Welsh L (2015) Vascular permeability—the essentials. Ups J Med Sci 120:135–143. doi:10.3109/03009734.2015.1064501

    Article  PubMed  PubMed Central  Google Scholar 

  25. Claesson-Welsh L, Welsh M (2013) VEGFA and tumour angiogenesis. J Intern Med 273:114–127. doi:10.1111/joim.12019

    Article  PubMed  CAS  Google Scholar 

  26. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081. doi:10.1093/carcin/bgp127

    Article  PubMed  CAS  Google Scholar 

  27. Criscuolo GR (1993) The genesis of peritumoral vasogenic brain edema and tumor cysts: a hypothetical role for tumor-derived vascular permeability factor. Yale J Biol Med 66:277–314

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Dahl I (1977) Ancient neurilemmoma (schwannoma). Acta Pathol Microbiol Scand A 85:812–818

    PubMed  CAS  Google Scholar 

  29. Daras M, Kaley TJ (2015) Benign brain tumors and tumors associated with phakomatoses. Continuum (Minneap Minn) 21:397–414. doi:10.1212/01.CON.0000464177.73440.44

    Article  Google Scholar 

  30. Davalos D, Akassoglou K (2012) Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol 34:43–62. doi:10.1007/s00281-00011-00290-00288

    Article  PubMed  CAS  Google Scholar 

  31. de la Fuente MI, DeAngelis LM (2014) The role of ventriculoperitoneal shunting in patients with supratentorial glioma. Ann Clin Transl Neurol 1:45–48. doi:10.1002/acn1003.1017

    Article  PubMed  Google Scholar 

  32. de Ribaupierre S, Dorfmuller G, Bulteau C, Fohlen M, Pinard JM, Chiron C, Delalande O (2007) Subependymal giant-cell astrocytomas in pediatric tuberous sclerosis disease: when should we operate? Neurosurgery 60:83–89 discussion 89-90

    Article  PubMed  Google Scholar 

  33. Di Rocco C, Iannelli A, Marchese E (1995) On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg 23:115–121

    Article  PubMed  CAS  Google Scholar 

  34. Dodd KM, Yang J, Shen MH, Sampson JR, Tee AR (2015) mTORC1 drives HIF-1alpha and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 34:2239–2250. doi:10.1038/onc.2014.164

    Article  PubMed  CAS  Google Scholar 

  35. Drake JM, Kestle JR, Tuli S (2000) CSF shunts 50 years on—past, present and future. Childs Nerv Syst 16:800–804

    Article  PubMed  CAS  Google Scholar 

  36. Dripps RD, Vandam LD (1951) Hazards of lumbar puncture. J Am Med Assoc 147:1118–1121

    Article  PubMed  CAS  Google Scholar 

  37. Duran WN, Breslin JW, Sanchez FA (2010) The NO cascade, eNOS location, and microvascular permeability. Cardiovasc Res 87:254–261. doi:10.1093/cvr/cvq139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Dvorak HF, Harvey VS, McDonagh J (1984) Quantitation of fibrinogen influx and fibrin deposition and turnover in line 1 and line 10 guinea pig carcinomas. Cancer Res 44:3348–3354

    PubMed  CAS  Google Scholar 

  40. Dvorak HF, Nagy JA, Berse B, Brown LF, Yeo KT, Yeo TK, Dvorak AM, van de Water L, Sioussat TM, Senger DR (1992) Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation. Ann N Y Acad Sci 667:101–111

    Article  PubMed  CAS  Google Scholar 

  41. Edwards CH, Paterson JH (1951) A review of the symptoms and signs of acoustic neurofibromata. Brain 74:144–190

    Article  PubMed  CAS  Google Scholar 

  42. Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52:1158–1164

    Article  PubMed  CAS  Google Scholar 

  43. Fincher EF (1951) Spontaneous subarachnoid hemorrhage in intradural tumors of the lumbar sac; a clinical syndrome. J Neurosurg 8:576–584

    Article  PubMed  CAS  Google Scholar 

  44. Fishman RA (1980) Cerebrospinal fluid in disease of the nervous system. W.B Saunders City

  45. F G (1903) Inflammations me ‘ninge’es avec chromatique, fibrineuse et cytologique du liquide ce’phalo-rachidien. Gazette des hoˆpitaux 76:1005–1006

    Google Scholar 

  46. Gardner WJ, Spitler DK, Whitten C (1954) Increased intracranial pressure caused by increased protein content in the cerebrospinal fluid; an explanation of papilledema in certain cases of small intracranial and intraspinal tumors, and in the Guillain-Barre syndrome. N Engl J Med 250:932–936

    Article  PubMed  CAS  Google Scholar 

  47. Gavra M, Thanos L, Pomoni M, Batakis N (2010) Spontaneous subarachnoid haemorrhage due to acoustic neurinoma. Case report and review of the literature. Br J Neurosurg 24:82–83. doi:10.3109/02688690903506085

    Article  PubMed  CAS  Google Scholar 

  48. Gerganov VM, Pirayesh A, Nouri M, Hore N, Luedemann WO, Oi S, Samii A, Samii M (2011) Hydrocephalus associated with vestibular schwannomas: management options and factors predicting the outcome. J Neurosurg 114:1209–1215. doi:10.3171/2010.10.JNS1029

    Article  PubMed  Google Scholar 

  49. Glasker S, Vortmeyer AO, Lonser RR, Lubensky IA, Okamoto H, Xia JB, Li J, Milne E, Kowalak JA, Oldfield EH et al (2006) Proteomic analysis of hemangioblastoma cyst fluid. Cancer Biol Ther 5:549–553

    Article  PubMed  CAS  Google Scholar 

  50. Gleeson RK, Butzer JF, Grin OD Jr (1978) Acoustic neurinoma presenting as subarachnoid hemorrhage. Case report. J Neurosurg 49:602–604

    Article  PubMed  CAS  Google Scholar 

  51. Grajkowska W, Kotulska K, Jurkiewicz E, Matyja E (2010) Brain lesions in tuberous sclerosis complex. Review. Folia Neuropathol 48:139–149

    PubMed  Google Scholar 

  52. Greenfield JG (1921) Original papers: on Froin’s syndrome, and its relation to allied conditions in the cerebrospinal fluid. J Neurol Psychopathol 2:105–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Harter DH, Bassani L, Rodgers SD, Roth J, Devinsky O, Carlson C, Wisoff JH, Weiner HL (2014) A management strategy for intraventricular subependymal giant cell astrocytomas in tuberous sclerosis complex. J Neurosurg Pediatr 13:21–28. doi:10.3171/2013.3179.PEDS13193

    Article  PubMed  Google Scholar 

  54. Hladky SB, Barrand MA (2014) Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11:26. doi:10.1186/2045-8118-1111-1126 eCollection 2014

    Article  PubMed  PubMed Central  Google Scholar 

  55. Inamasu J, Nakamura Y, Saito R, Kuroshima Y, Mayanagi K, Orii M, Ichikizaki K (2003) Postoperative communicating hydrocephalus in patients with supratentorial malignant glioma. Clin Neurol Neurosurg 106:9–15

    Article  PubMed  Google Scholar 

  56. Irani DN (2008) Cerebrospinal fluid in clinical practice. Saunders, Elsevier Health Sciences, City

  57. Jagannathan J, Lonser RR, Smith R, DeVroom HL, Oldfield EH (2008) Surgical management of cerebellar hemangioblastomas in patients with von Hippel-Lindau disease. J Neurosurg 108:210–222. doi:10.3171/JNS/2008/108/2/0210

    Article  PubMed  Google Scholar 

  58. Jung TY, Chung WK, Oh IJ (2014) The prognostic significance of surgically treated hydrocephalus in leptomeningeal metastases. Clin Neurol Neurosurg 119:80–83

    Article  PubMed  Google Scholar 

  59. Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4

  60. Kasantikul V, Netsky MG (1979) Combined neurilemmoma and angioma. Tumor of ectomesenchyme and a source of bleeding. J Neurosurg 50:81–87

    Article  PubMed  CAS  Google Scholar 

  61. Krishnamurthy S, Li J (2014) New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 3:185–194. doi:10.3978/j.issn.2224-4336.2014.07.02

    Article  PubMed  PubMed Central  Google Scholar 

  62. Krishnamurthy S, Li J, Schultz L, Jenrow KA (2012) Increased CSF osmolarity reversibly induces hydrocephalus in the normal rat brain. Fluids Barriers CNS 9:13. doi:10.1186/2045-8118-1189-1113

    Article  PubMed  PubMed Central  Google Scholar 

  63. Krishnamurthy S, Li J, Schultz L, McAllister JP 2nd (2009) Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. Cerebrospinal Fluid Res 6:1743–8454

    Article  CAS  Google Scholar 

  64. Kwon SK, Kim MW (2014) Pseudo-Froin’s syndrome, xanthochromia with high protein level of cerebrospinal fluid. Korean J Anesthesiol 67:S58–S59. doi:10.4097/kjae.2014.4067.S.S4058

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR et al (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622. doi:10.1158/1078-0432.CCR-08-2057

    Article  PubMed  CAS  Google Scholar 

  66. Laviv Y, Jackson S, Rappaport ZH (2015) Persistent communicating hydrocephalus in adult tuberous sclerosis patients: a possible therapeutic role for everolimus. Acta Neurochir 157:241–245. doi:10.1007/s00701-014-2309-0

    Article  PubMed  Google Scholar 

  67. Ljevak J, Poljakovic Z, Adamec I, Habek M (2014) Glioblastoma multiforme presenting as Froin’s syndrome: a new face of an old foe. Acta Neurol Belg 114:319–320. doi:10.1007/s13760-014-0289-8

    Article  PubMed  Google Scholar 

  68. Long DM (1973) Vascular ultrastructure in human meningiomas and schwannomas. J Neurosurg 38:409–419

    Article  PubMed  CAS  Google Scholar 

  69. Lonser RR, Vortmeyer AO, Butman JA, Glasker S, Finn MA, Ammerman JM, Merrill MJ, Edwards NA, Zhuang Z, Oldfield EH (2005) Edema is a precursor to central nervous system peritumoral cyst formation. Ann Neurol 58:392–399

    Article  PubMed  Google Scholar 

  70. Maldonado M, Baybis M, Newman D, Kolson DL, Chen W, McKhann G 2nd, Gutmann DH, Crino PB (2003) Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the tuberous sclerosis complex. Neurobiol Dis 14:279–290

    Article  PubMed  CAS  Google Scholar 

  71. Merritt H.H. F-SF (1937) The cerebrospinal fluid. W. B. Saunders Co., City

  72. Michel CC, Curry FE (1999) Microvascular permeability. Physiol Rev 79:703–761

    Article  PubMed  CAS  Google Scholar 

  73. Mirza S, Adams WM, Corkhill RA (2008) Froin’s syndrome revisited, 100 years on. Pseudo-Froin’s syndrome on MRI. Clin Radiol 63:600–604. doi:10.1016/j.crad.2007.07.027

    Article  PubMed  CAS  Google Scholar 

  74. Montano N, D’Alessandris QG, Bianchi F, Lauretti L, Doglietto F, Fernandez E, Maira G, Pallini R (2011) Communicating hydrocephalus following surgery and adjuvant radiochemotherapy for glioblastoma. J Neurosurg 115:1126–1130. doi:10.3171/2011.8.JNS11738

    Article  PubMed  Google Scholar 

  75. Murray KJ, Ausman JI, Chou SN, Douglas SD (1977) Immunoproteins in human brain tumor cyst fluids. J Neurosurg 46:314–319

    Article  PubMed  CAS  Google Scholar 

  76. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF (2008) Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis 11:109–119. doi:10.1007/s10456-10008-19099-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med 2:a006544. doi:10.1101/cshperspect.a006544

  78. Nigim F, Critchlow JF, Kasper EM (2015) Role of ventriculoperitoneal shunting in patients with neoplasms of the central nervous system: an analysis of 59 cases. Mol Clin Oncol 3:1381–1386

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nishida K, Ueda S, Matsumoto K, Kusaka K, Takeuchi R (1990) Cauda equina neurinoma associated with normal pressure hydrocephalus—case report. Neurol Med Chir (Tokyo) 30:258–262

    Article  CAS  Google Scholar 

  80. Nomura T, Ikezaki K, Natori Y, Fukui M (1993) Altered response to histamine in brain tumor vessels: the selective increase of regional cerebral blood flow in transplanted rat brain tumor. J Neurosurg 79:722–728

    Article  PubMed  CAS  Google Scholar 

  81. O’Meara RA (1958) Coagulative properties of cancers. Ir J Med Sci 394:474–479

    Article  PubMed  Google Scholar 

  82. Occhipinti ECC (1982) Shunt failure in hydrocephalus with high protein fluid. Monog Neural Sci 8:220–222

    Google Scholar 

  83. Omuro AM, Lallana EC, Bilsky MH, DeAngelis LM (2005) Ventriculoperitoneal shunt in patients with leptomeningeal metastasis. Neurology 64:1625–1627

    Article  PubMed  Google Scholar 

  84. Papiez J, Rojiani MV, Rojiani AM (2014) Vascular alterations in schwannoma. Int J Clin Exp Pathol 7:4032–4038 eCollection 2014

    PubMed  PubMed Central  Google Scholar 

  85. Perek-Polnik M, Jozwiak S, Jurkiewicz E, Perek D, Kotulska K (2012) Effective everolimus treatment of inoperable, life-threatening subependymal giant cell astrocytoma and intractable epilepsy in a patient with tuberous sclerosis complex. Eur J Paediatr Neurol 16:83–85. doi:10.1016/j.ejpn.2011.1009.1006

    Article  PubMed  Google Scholar 

  86. Piccirillo E, Wiet MR, Flanagan S, Dispenza F, Giannuzzi A, Mancini F, Sanna M (2009) Cystic vestibular schwannoma: classification, management, and facial nerve outcomes. Otol Neurotol 30:826–834. doi:10.1097/MAO.0b013e3181b04e18

    Article  PubMed  Google Scholar 

  87. Pirouzmand F, Tator CH, Rutka J (2001) Management of hydrocephalus associated with vestibular schwannoma and other cerebellopontine angle tumors. Neurosurgery 48:1246–1253 discussion 1253-1244

    PubMed  CAS  Google Scholar 

  88. Prockop LD, Fishman RA (1968) Experimental pneumococcal meningitis. Permeability changes influencing the concentration of sugars and macromolecules in cerebrospinal fluid. Arch Neurol 19:449–463

    Article  PubMed  CAS  Google Scholar 

  89. Propp JM, McCarthy BJ, Davis FG, Preston-Martin S (2006) Descriptive epidemiology of vestibular schwannomas. Neuro-Oncology 8:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rogers LR, LoRusso P, Nadler P, Malik G, Shields A, Kaelin W (2011) Erlotinib therapy for central nervous system hemangioblastomatosis associated with von Hippel-Lindau disease: a case report. J Neuro-Oncol 101:307–310. doi:10.1007/s11060-010-0244-3

    Article  Google Scholar 

  91. Rogg JM, Ahn SH, Tung GA, Reinert SE, Noren G (2005) Prevalence of hydrocephalus in 157 patients with vestibular schwannoma. Neuroradiology 47:344–351

    Article  PubMed  Google Scholar 

  92. Scallan J HV, Korthuis RJ. (2010) Capillary fluid exchange: regulation, functions, and pathology. Morgan & Claypool Life Sciences, City

  93. Sharma M, Ralte A, Arora R, Santosh V, Shankar SK, Sarkar C (2004) Subependymal giant cell astrocytoma: a clinicopathological study of 23 cases with special emphasis on proliferative markers and expression of p53 and retinoblastoma gene proteins. Pathology 36:139–144

    Article  PubMed  CAS  Google Scholar 

  94. Slattery WH (2015) Neurofibromatosis type 2. Otolaryngol Clin N Am 48:443–460. doi:10.1016/j.otc.2015.02.005

    Article  Google Scholar 

  95. Stark AK, Sriskantharajah S, Hessel EM, Okkenhaug K (2015) PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol 23:82–91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sullivan RL Jr, Reeves AG (1977) Normal cerebrospinal fluid protein, increased intracranial pressure, and the Guillain-Barre syndrome. Ann Neurol 1:108–109

    Article  PubMed  Google Scholar 

  97. Tanaka Y, Kobayashi S, Hongo K, Tada T, Sato A, Takasuna H (2003) Clinical and neuroimaging characteristics of hydrocephalus associated with vestibular schwannoma. J Neurosurg 98:1188–1193

    Article  PubMed  Google Scholar 

  98. Tucker M, Goldstein A, Dean M, Knudson A (2000) National Cancer Institute Workshop Report: the phakomatoses revisited. J Natl Cancer Inst 92:530–533

    Article  PubMed  CAS  Google Scholar 

  99. Van der Hoeve J (1923) Eye diseases in tuberous sclerosis of the brain and in Recklinghausen’s disease Tran Ophthalmol Soc UK 43: 534–541

  100. Vilanova JR, Burgos-Bretones JJ, Alvarez JA, Rivera-Pomar JM (1982) Benign schwannomas: a histopathological and morphometric study. J Pathol 137:281–286

    Article  PubMed  CAS  Google Scholar 

  101. Wada K, Nawashiro H, Shimizu A, Shima K (2003) MRI analysis of hydrocephalus associated with acoustic neurinoma. Acta Neurochir Suppl 86:549–551

    PubMed  CAS  Google Scholar 

  102. Weil RJ, Vortmeyer AO, Zhuang Z, Pack SD, Theodore N, Erickson RK, Oldfield EH (2002) Clinical and molecular analysis of disseminated hemangioblastomatosis of the central nervous system in patients without von Hippel-Lindau disease. Report of four cases J Neurosurg 96:775–787

    PubMed  CAS  Google Scholar 

  103. Wilhelm DL (1973) Mechanisms responsible for increased vascular permeability in acute inflammation. Agents Actions 3:297–306

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Laviv.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was not funded or financially supported.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical approval

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laviv, Y., Kasper, B.S. & Kasper, E.M. Vascular hyperpermeability as a hallmark of phacomatoses: is the etiology angiogenesis comparable with mechanisms seen in inflammatory pathways? Part I: historical observations and clinical perspectives on the etiology of increased CSF protein levels, CSF clotting, and communicating hydrocephalus: a comprehensive review. Neurosurg Rev 41, 957–968 (2018). https://doi.org/10.1007/s10143-017-0839-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-017-0839-7

Keywords

Navigation