Skip to main content

Advertisement

Log in

Genetic biofortification: advancing crop nutrition to tackle hidden hunger

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Malnutrition, often termed “hidden hunger,” represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aggarwal S, Kumar A, Bhati KK, Kaur G, Shukla V, Tiwari S, Pandey AK (2018) RNAi-mediated downregulation of inositol pentakisphosphate kinase (IPK1) in wheat grains decreases phytic acid levels and increases Fe and Zn accumulation. Front Plant Sci 9:259

    PubMed  PubMed Central  Google Scholar 

  • Ahmad N, Rahman M‐U, Mukhtar Z, Zafar Y, Zhang B (2019) A critical look on CRISPR‐based genome editing in plants. J Cell Physiol 235:666–682

  • Ahmar S, Gill RA, Jung K-H, Faheem A, Qasim MU, Mubeen M, Zhou W (2020) Conventional and molecular techniques from simple breeding to speed breeding in crop plants: recent advances and future outlook. Int J Mol Sci 21(7):2590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alahmad S, Dinglasan E, Leung KM, Riaz A, Derbal N, Voss-Fels KP, Hickey LT (2018) Speed breeding for multiple quantitative traits in durum wheat. Plant Methods 14(1):1–15

    Google Scholar 

  • Allier A, Teyssèdre S, Lehermeier C, Moreau L, Charcosset A (2020) Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics 21:1–16

    Google Scholar 

  • Aluru MR, Rodermel SR, Reddy MB (2011) Genetic modification of low phytic acid 1–1 maize to enhance iron content and bioavailability. J Agric Food Chem 59(24):12954–12962. https://doi.org/10.1021/jf203485a

    Article  CAS  PubMed  Google Scholar 

  • Ashoka P, Spandana B, Saikanth DRK, Kesarwani A, Nain M, Pandey SK, Singh BV, Maurya CL (2023) Bio-fortification and its impact on global health. J Exp Agric Int 45(10):106–115

    Google Scholar 

  • Avnee SS, Chaudhary DR, Jhorar P, Rana RS (2023) Biofortification: an approach to eradicate micronutrient deficiency. Front Nut 10:1233070

    CAS  Google Scholar 

  • Ayala A, Meier BM (2017) A human rights approach to the health implications of food and nutrition insecurity. Public Health Rev 38(1):1–22

    Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    CAS  Google Scholar 

  • Baxter I, Ouzzani M, Orcun S, Kennedy B, Jandhyala SS, Salt DE (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143:600–611. https://doi.org/10.1104/pp.106.092528

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386. https://doi.org/10.1016/j.pbi.2009.05.002

  • Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Meddich A (2022) The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance and the drought stress tolerance of quinoa. Plants 11(3):393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berman J, Zorrilla-López U, Sandmann G, Capell T, Christou P, Zhu C (2017) The silencing of carotenoid β-hydroxylases by RNA interference in different maize genetic backgrounds increases the β-carotene content of the endosperm. Int J Mol Sci 18:2515. https://doi.org/10.3390/ijms18122515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhati KK, Alok A, Kumar A, Kaur J, Tiwari S, Pandey AK (2016) Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. J Exp Bot 67(14):4379–4389. https://doi.org/10.1093/jxb/erw224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Baenziger PS, Waters BM, Poudel R, Belamkar V, Poland J, Morgounov A (2018) Genome-wide association study reveals novel genomic regions associated with 10 grain minerals in synthetic hexaploid wheat. Int J Mol Sci 19(10):3237

    PubMed  PubMed Central  Google Scholar 

  • Bhatta M, Sandro P, Smith MR, Delaney O, Voss-Fels KP, Gutierrez L, Hickey LT (2021) Need for speed: manipulating plant growth to accelerate breeding cycles. Curr Opin Plant Biol 60:101986

    PubMed  Google Scholar 

  • Biswas T, Townsend N, Magalhaes RS, Hasan M, Mamun A (2021) Patterns and determinants of the double burden of malnutrition at the household level in South and Southeast Asia. Eur J Clin Nutr 75(2):385–391

    CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh NP (2015) Genetics-and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    CAS  PubMed  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S et al (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56:204–213. https://doi.org/10.1016/j.jcs.2012.03.005

    Article  CAS  Google Scholar 

  • Brendamour B (2015) Nutrition education and gardening in elementary and secondary schools. Ky Nurse 63(2):3–4

    PubMed  Google Scholar 

  • Brinch-Pederson H, Olesen A, Rasmussen SK, Holm PB (2000) Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol Breed 6:195–206. https://doi.org/10.1023/A:1009690730620

    Article  Google Scholar 

  • Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, Hurst R, Knott P, McGrath SP, Meacham MC (2010) Selenium biofortification of highyielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil 332:5–18. https://doi.org/10.1007/s11104-009-0234-4

    Article  CAS  Google Scholar 

  • Burchi F, Fanzo J, Frison E (2011) The role of food and nutrition system approaches in tackling hidden hunger. Int J Environ Res Public Health 8(2):358–373

    PubMed  PubMed Central  Google Scholar 

  • Burton RA, Collins HM, Kibble NA, Smith JA, Shirley NJ, Jobling SA, Fincher GB (2011) Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1, 3; 1, 4)-β-d-glucans and alters their fine structure. Plant Biotechnol J 9(2):117–135

    CAS  PubMed  Google Scholar 

  • Caligari P, Brown J (2017) Plant breeding, practice In: Encyclopedia of Applied Plant Sciences. 229–235. https://doi.org/10.1016/B978-0-12-394807-6.00195-7

  • Carroll D (2011) Genome engineering with zinc-finger nucleases. Genetics 188(4):773–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzola F, Bermejo CJ, Guindon MF, Cointry E (2020) Speed breeding in pea (Pisum sativum L.), an efficient and simple system to accelerate breeding programs. Euphytica 216(11):178

  • Chakrabarty S (2021) Prevalence and covariates of vitamin D deficiencies (VDD) among adolescents in India. Ind J Pediatr 89:751–758

  • Chandra AK, Kumar A, Bharati A, Joshi R, Agrawal A, Kumar S (2020b) Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops. 3 Biotech 10:1–15

  • Chandra AK, Pandey D, Tiwari A, Sharma D, Agarwal A, Sood S, Kumar A (2020a) An omics study of iron and zinc homeostasis in finger millet: biofortified foods for bmicronutrient deficiency in an era of climate change? OMICS: A J Int Biol 24(12):688–705

  • Chandra AK, Pandey D, Tiwari A, Gururani K, Agarwal A, Dhasmana A, Kumar A (2021) Metal based nanoparticles trigger the differential expression of key regulatory genes which regulate iron and zinc homeostasis mechanism in finger millet. J Cereal Sci 100:103235

    CAS  Google Scholar 

  • Chang JD, Xie Y, Zhang H, Zhang S, Zhao FJ (2022) The vacuolar transporter OsNRAMP2 mediates fe remobilization during germination and affects Cd distribution to rice grain. Plant Soil 476:79–95

  • Chen R, Xue G, Chen P, Yao B, Yang W, Ma Q et al (2008) Transgenic maize plants expressing a fungal phytase gene. Transgenic Res 17(4):633–643. https://doi.org/10.1007/s11248-007-9138-3

    Article  CAS  PubMed  Google Scholar 

  • Connorton JM, Jones ER, Rodríguez-Ramiro I, Fairweather-Tait S, Uauy C, Balk J (2017) Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiol 174(4):2434–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decourcelle M, Perez-Fons L, Baulande S, Steiger S, Couvelard L, Hem S, Sandmann G (2015) Combined transcript, proteome, and metabolite analysis of transgenic maize seeds engineered for enhanced carotenoid synthesis reveals pleotropic effects in core metabolism. J Exp Botany 66(11):3141–3150

    CAS  Google Scholar 

  • Dhaliwal SS, Sharma V, Shukla AK, Verma V, Kaur M, Shivay YS, Barek V (2022) Biofortification—a frontier novel approach to enrich micronutrients in field crops to encounter the nutritional security. Molecules 27(4):1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diacono M, Montemurro F (2011) Long-term effects of organic amendments on soil fertility. Sustain Agric 2:761–786

    Google Scholar 

  • De Steur H, Mogendi JB, Blancquaert D, Lambert W, Van Der Straeten D, Gellynck X. (2014). Genetically modified rice with health benefits as a means to reduce micronutrient malnutrition: global status, consumer preferences and potential health impacts of rice biofortification. In Wheat and rice in disease prevention and health (pp. 283–299): Elsevier

  • Dong L, Qi X, Zhu J, Liu C, Zhang X, Cheng B et al (2019) Supersweet and Waxy: Meeting the Diverse Demands for Specialty Maize by Genome Editing. Plant Biotechnol J 17(10):1853–1855. https://doi.org/10.1111/pbi.13144

    Article  PubMed  PubMed Central  Google Scholar 

  • Douthwaite B (2021) Study on HarvestPlus' contribution to the development of national biofortification breeding programs. Washington, DC: International Food Policy Research Institute (IFPRI). https://doi.org/10.2499/p15738coll2.134880

  • Drakakaki G, Marcel S, Glahn RP, Lund EK, Pariagh S, Fischer R et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59(6):869–880. https://doi.org/10.1007/s11103-005-1537-3

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SL, Garcia-Oliveira AL, Govindaraj M, Ortiz R (2023) Biofortification to avoid malnutrition in humans in a changing climate: enhancing micronutrient bioavailability in seed, tuber, and storage roots. Front Plant Sci 14:1119148

    PubMed  PubMed Central  Google Scholar 

  • El-Ramady H, Abdalla N, Elbasiouny H, Elbehiry F, Elsakhawy T, Omara AED, Zia-ur-Rehman M (2020) Nano-biofortification of different crops to immune against COVID-19: A review. Ecotoxicol Environ Saf 222:112500

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    CAS  PubMed  Google Scholar 

  • Frison E, Clément C (2020) The potential of diversified agroecological systems to deliver healthy outcomes: making the link between agriculture, food systems & health. Food Policy 96:101851

    Google Scholar 

  • Garcia‐Casal MN, Peña‐Rosas JP, Giyose B, Consultation Working Groups (2017) Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann N Y Acad Sci 1390(1):3–13

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12. https://doi.org/10.3389/fnut.2018.00012

  • Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790

    Google Scholar 

  • Green H, Broun P, Cook D, Cooper K, Drewnowski A, Pollard D, Roulin A (2018) Healthy and sustainable diets for future generations. J Sci Food Agric 98(9):3219–3224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R (2023) Prospects of microgreens as budding living functional food: breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 14:1053810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley JA, Sassone-Corsi P, Zierath JR (2020) Chrono-nutrition for the prevention and treatment of obesity and type 2 diabetes: from mice to men. Diabetologia 63:2253–2259

    PubMed  Google Scholar 

  • Hefferon K (2019) Biotechnological approaches for generating zinc-enriched crops to combat malnutrition. Nutrients 11(2):253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hefferon K (2013) Plant-derived pharmaceuticals for the developing world. Biotechnol J 8:1193–1202

  • Holme IB, Dionisio G, Brinch-Pedersen H, Wendt T, Madsen CK, Vincze E, Holm PB (2012) Cisgenic barley with improved phytase activity. Plant Biotechnol J 10(2):237–247

    CAS  PubMed  Google Scholar 

  • Hotz C, Loechl C, Lubowa A, Tumwine JK, Ndeezi G, Masawi AN, Baingana R, Carriquiry A, Brauw A, Meenakshi JV, Gilligan DO (2012) Introduction of β-carotene–rich orange sweet potato in rural Uganda resulted in increased vitamin A intakes among children and women and improved vitamin A status among children. J Nutr 142:1871–1880

    CAS  PubMed  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S-S1467. https://doi.org/10.3945/ajcn.2010.28674F

    Article  CAS  PubMed  Google Scholar 

  • Ibeanu VN, Edeh CG, Ani PN (2020) Evidence-based strategy for prevention of hidden hunger among adolescents in a suburb of Nigeria. BMC Public Health 20(1):1683

  • Ibrahim S, Saleem B, Rehman N, Zafar SA, Naeem MK, Khan MR (2021) CRISPR/Cas9 mediated disruption of inositol pentakisphosphate 2-kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J Adv Res 37:33–41. https://doi.org/10.1016/j.jare.2021.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaenicke H, Virchow D (2013) Entry points into a nutrition-sensitive agriculture. Food Security 5:679–692

    Google Scholar 

  • Jannuzzi LB, Pereira-Acacio A, Ferreira BS, Silva-Pereira D, Veloso-Santos JP, Alves-Bezerra DS, Vieira LD (2022) Undernutrition–thirty years of the regional basic diet: the legacy of Naíde Teodósio in different fields of knowledge. Nut Neurosci 25(9):1973–1994

    Google Scholar 

  • Joshi A, Prajapati U, Sethi S, Arora B, Sharma RR (2020) Fortification in fresh and fresh-cut horticultural products. In Fresh-Cut Fruits and Vegetables Academic Press, pp 183–204

  • Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55. https://doi.org/10.1038/nrm3486

    Article  CAS  PubMed  Google Scholar 

  • Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA (2022) A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Sci 323:111376

    CAS  PubMed  Google Scholar 

  • Kaur T, Rana KL, Kour D, Sheikh I, Yadav N, Kumar V, Yadav AN, Dhaliwal HS, Saxena AK (2020). Microbe-mediated biofortification for micronutrients: present status and future challenges. In New and future developments in microbial biotechnology and bioengineering Elsevier, pp 1–17

  • Khokhar JS, Sareen S, Tyagi BS, Singh G, Wilson L, King IP, et al. (2018) Variation in grain zn concentration, and the grain ionome, in field-grown Indian wheat. PloS One 13:e0192026. https://doi.org/10.1371/journal.pone.0192026

  • Kawakami Y, Bhullar NK (2018) Molecular processes in iron and zinc homeostasis and their modulation for biofortification in rice. J Integr Plant Biol 60(12):1181–1198

    CAS  PubMed  Google Scholar 

  • Kim MJ, Kim JK, Kim HJ, Pak JH, Lee JH, Kim DH, Ha SH (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7(10):e48287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JJ, Jeong EG, Jeong JM, Lee JH, Cho YC, Jeong OY, Seo DH (2020) Development of cold tolerance genetic resource ‘Jungmo1022’through shuttle breeding in rice. Korean Soc Breeding Sci 52(2):206–211

    Google Scholar 

  • Kiran A, Wakeel A, Mahmood K, Mubaraka R, Hafsa, Haefele SM (2022) Biofortification of staple crops to alleviate human malnutrition: contributions and potential in developing countries. Agronomy 12(2): 452. https://doi.org/10.3390/agronomy12020452

  • Kudapa H, Barmukh R, Vemuri H, Gorthy S, Pinnamaneni R, Vetriventhan M, Srivastava RK, Joshi P, Habyarimana E, Gupta SK, Govindaraj M (2023) Genetic and genomic interventions in crop biofortification: examples in millets. Front Plant Sci 14:1123655

    PubMed  PubMed Central  Google Scholar 

  • Kumar A, Gupta S, Abrol G, Chandra A (2018) Deriving innovations through intervention of newer technologies in integrated manner for value addition and development of value-added products in agri-food-nutrition and health sectors. Acta Sci Agric 2:78–79

    Google Scholar 

  • Kumar S, Palve A, Joshi C, Srivastava RK (2019) Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 5:6

    Google Scholar 

  • Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, Senapathy S, Mahendrakar MD, Yadav RS, Srivastava RK (2016) Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet [Pennisetum glaucum (L.) r. br.]. Front Plant Sci 7:1636. https://doi.org/10.3389/fpls.2016.01636

  • Kumar A, Gaur VS, Goel A, Gupta AK (2014) De novo assembly and characterization of developing spikes transcriptome of finger millet (Eleusine coracana): a minor crop having nutraceutical properties. Plant Mol Biol Rep 33:905–922. https://doi.org/10.1007/s11105-014-0802-5

  • Koç E, Karayiğit B (2022) Assessment of biofortification approaches used to improve micronutrient-dense plants that are a sustainable solution to combat hidden hunger. J Soil Sci Plant Nutr 22(1):475–500

  • Labuschagne M (2023) Biofortification to improve food security. Emerg Topics Life Sci 7(2):219–227

    CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ 32:408–416. https://doi.org/10.1111/j.1365-3040.2009.01935.x

    Article  CAS  PubMed  Google Scholar 

  • Li C, Brant E, Budak H, Zhang B (2021) CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 22(4):253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chu W, Gill RA, Sang S, Shi Y, Hu X, Yang Y, Zaman QU, Zhang B (2022) Computational tools and resources for CRISPR/Cas genome editing. Genomics Proteomics Bioinforma 21(1):108–126

    Google Scholar 

  • Lipkie TE, De Moura FF, Zhao ZY, Albertsen MC, Che P, Glassman K, Ferruzzi MG (2013) Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum. J Agric Food Chem 61(24):5764–5771

    CAS  PubMed  Google Scholar 

  • Liu Y, Huang S, Jiang Z, Wang Y, Zhang Z (2021a) Selenium biofortification modulates plant growth, microelement and heavy metal concentrations, selenium uptake, and accumulation in black-grained wheat. Front Plant Sci 12:748523

    PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yang F, Zhang J, Liu H, Rahman S, Islam S et al (2021b) Application of CRISPR/Cas9 in crop quality improvement. Ijms 22(8):4206. https://doi.org/10.3390/ijms22084206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21:184S-S190. https://doi.org/10.1080/07315724.2002.10719264

    Article  CAS  PubMed  Google Scholar 

  • Manickavelu A, Hattori T, Yamaoka S, Yoshimura K, Kondou Y, Onogi A et al. (2017) Genetic nature of elemental contents in wheat grains and its genomic prediction: Toward the effective use of wheat landraces from Afghanistan. PloS One 12: e0169416. https://doi.org/10.1371/journal.pone.0169416

  • Makri A, Stilianakis NI (2008) Vulnerability to air pollution health effects. Int J Hyg Environ Health 211(3–4):326–336

    PubMed  Google Scholar 

  • Malik KA, Maqbool A (2020) Transgenic crops for biofortification. Front Sustain Food Syst 4:182

    Google Scholar 

  • Maqbool A, Bakhsh A, Aksoy E (2021) Effects of natural variations on biofortification. In Wild germplasm for genetic improvement in crop plants. Elsevier, pp 115–138

  • Martínez-Fortún J, Phillips DW, Jones HD (2022) Natural and artificial sources of genetic variation used in crop breeding: a baseline comparator for genome editing. Front Genome Edit 4:937853

    Google Scholar 

  • Masuda H, Suzuki M, Morikawa KC, Kobayashi T, Nakanishi H, Takahashi M et al (2008) Increase in iron and zinc concentrations in rice grains via the introduction of barley genes involved in phytosiderophore synthesis. Rice 1:100–108. https://doi.org/10.1007/s12284-008-9007-6

    Article  Google Scholar 

  • Masuda H, Ishimaru Y, Aung MS, Kobayashi T, Kakei Y, Takahashi M et al (2012) Iron biofortification in rice by the introduction of multiple genes involved in iron nutrition. Sci Rep 2:534. https://doi.org/10.1038/srep00543

    Article  CAS  Google Scholar 

  • Mattar G, Haddarah A, Haddad J, Pujola M, Sepulcre F (2022) New approaches, bioavailability and the use of chelates as a promising method for food fortification. Food Chem 373:131394

    CAS  PubMed  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11(2):166–170

    CAS  PubMed  Google Scholar 

  • Mehta H, Groetch M, Wang J (2013) Growth and nutritional concerns in children with food allergy. Curr Opin Allergy Clin Immunol 13(3):275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra VK, Gupta S, Chand R, Yadav PS, Singh SK, Joshi AK et al (2019) Comparative transcriptomic profiling of high- and low- grain zinc and iron containing Indian wheat genotypes. Curr Plant Biol 18:100105. https://doi.org/10.1016/j.cpb.2019.100105

    Article  Google Scholar 

  • Modak S (2020) Nutrition sensitive agriculture in Tripura, an overview. Int J Curr Microbiol Appl Sci 9(7):3580–3586

    CAS  Google Scholar 

  • Msungu SD, Mushongi AA, Venkataramana PB, Mbega ER (2022) A review on the trends of maize biofortification in alleviating hidden hunger in sub-Sahara Africa. Sci Hortic 299:111029

    Google Scholar 

  • Nachimuthu VV, Robin S, Sudhakar D, Rajeswari S, Raveendran M, Subramanian K, Pandian BA (2014) Genotypic variation for micronutrient content in traditional and improved rice lines and its role in biofortification programme. Indian J Sci Technol 7(9):1414–1425

    Google Scholar 

  • HLPE (2019) Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security, Rome

  • Noort MW, Renzetti S, Linderhof V, du Rand GE, Marx-Pienaar NJ, de Kock HL, Taylor JR (2022) Towards sustainable shifts to healthy diets and food security in sub-saharan Africa with climate-resilient crops in bread-type products: a food system analysis. Foods 11(2):135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ofori KF, Antoniello S, English MM, Aryee AN (2022) Improving nutrition through biofortification–a systematic review. Front Nutr 9:1043655

    PubMed  PubMed Central  Google Scholar 

  • Pandey VL, Dev SM, Jayachandran U (2016) Impact of agricultural interventions on the nutritional status in South Asia: a review. Food Policy 62:28–40

    PubMed  PubMed Central  Google Scholar 

  • Patel P, Trivedi G, Saraf M (2018) Iron biofortification in mungbean using siderophore producing plant growth promoting bacteria. Environ Sustain 1:357–365

    Google Scholar 

  • Poniedziałek B, Perkowska K, Rzymski P (2020) Food fortification: what’s in it for the malnourished world? Vitamins and minerals biofortification of edible plants, John Wiley & Sons Ltd, 27–44

  • Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M (2021) Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. Adv Genet 107:89–120. https://doi.org/10.1016/bs.adgen.2020.11.003

    Article  CAS  PubMed  Google Scholar 

  • Preciado-Rangel P, Hernández-Montiel LG, Valdez-Cepeda RD, Cruz-Lázaro EDL, Lara-Capistrán L, Morales-Morales B, Gaucin-Delgado JM (2021) Biofortification with selenium increases bioactive compounds and antioxidant capacity in tomato fruits. Terra Latinoamericana, 39:979

  • Pangaribowo EH, Gerber N, Torero M (2013) Food and Nutrition Security Indicators: a review, ZEF – Working Paper 108. FOODESECURE

  • Purohit P, Rawat H, Verma N, Mishra S, Nautiyal A, Bhatt S, Bisht N, Aggarwal K, Bora A, Kumar H, Rawal P (2023) Analytical approach to assess anti-nutritional factors of grains and oilseeds: a comprehensive review. J. Agric. Food Res. 14(5):100877

  • Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT et al (2000) Origin and seed phenotype of maize low phytic acid 1–1 and low phytic acid 2–1. Plant Physiol 124(1):355–368. https://doi.org/10.1104/pp.124.1.355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajam MV (2020) RNA silencing technology: a boon for crop improvement. J Biosci 45:1–5. https://doi.org/10.1007/s12038-020-00082-x

    Article  CAS  Google Scholar 

  • Ramalingam AP, Mohanavel W, Premnath A, Muthurajan R, Prasad PVV, Perumal R (2021) Large-Scale non-targeted metabolomics reveals antioxidant, nutraceutical and therapeutic potentials of sorghum. Antioxidants 10:1511. https://doi.org/10.3390/antiox10101511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana MM, Takamatsu T, Baslam M, Kaneko K, Itoh K, Harada N, Sugiyama T, Ohnishi T, Kinoshita T, Takagi H, Mitsui T (2019) Salt tolerance improvement in rice through efficient SNP marker-assisted selection coupled with speed-breeding. Int J Mol Sci 20(10):2585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F (2021) Next-generation breeding strategies for climate-ready crops. Front Plant Sci 12:620420. https://doi.org/10.3389/fpls.2021.620420

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman A, Farooq M, Ullah A, Nadeem F, Im SY, Park SK, Lee DJ (2020) Agronomic biofortification of zinc in Pakistan: status, benefits, and constraints. Front Sustain Food Syst 4:591722

    Google Scholar 

  • Rhodes DH, Hoffmann L Jr, Rooney WL, Herald TJ, Bean S, Boyles R et al (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18:15. https://doi.org/10.1186/s12864-016-3403-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson LA, Hammitt JK (2018) Valuing nonfatal health risk reductions in global benefit‐cost analysis. SSRN 1–32. https://doi.org/10.2139/ssrn.4013166

  • Roorkiwal M, Bhandari A, Barmukh R, Bajaj P, Valluri VK, Chitikineni A et al (2022) Genome-wide association mapping of nutritional traits for designing superior chickpea varieties. Front Plant Sci 13:843911. https://doi.org/10.3389/fpls.2022.843911

    Article  PubMed  PubMed Central  Google Scholar 

  • Samineni S, Sen M, Sajja SB, Gaur PM (2020) Rapid generation advance (RGA) in chickpea to produce up to seven generations per year and enable speed breeding. The Crop Journal 8(1):164–169

    Google Scholar 

  • Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF et al (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16(4):902–910. https://doi.org/10.1111/pbi.12837

    Article  CAS  PubMed  Google Scholar 

  • Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK (2021) Pearl millet: a climate-resilient nutricereal for mitigating hidden hunger and provide nutritional security. Front Plant Sci 12:659938. https://doi.org/10.3389/fpls.2021.659938

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnurr MA (2019) Africa's gene revolution: genetically modified crops and the future of African agriculture. McGill-Queen's Press-MQUP 20(2):1–3

  • Schösler H, De Boer J, Boersema JJ (2012) Can we cut out the meat of the dish? Constructing consumer-oriented pathways towards meat substitution. Appetite 58(1):39–47

    PubMed  Google Scholar 

  • Scrimgeour AG, Condlin ML, Otieno L, Bovill ME (2011) Zinc intervention strategies: costs and health benefits. Nutrients, Dietary Supplements and Nutriceuticals: Cost Analysis Versus Clinical Benefits, Humana Press, 189–214

  • Schiavon M, Nardi S, Dalla Vecchia F, Ertani A (2020) Selenium biofortification in the 21 st century: status and challenges for healthy human nutrition. Plant Soil 453:245–270

  • Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Zhou W (2021) Biofortification of cereals and pulses using new breeding techniques: current and future perspectives. Front Nutr. 8:721728

  • Shahzad MA, Wang L, Qin S, Zhou S (2023) COVID-19 incidence of poverty: how has disease affected the cost of purchasing food in Pakistan. Prev Med Rep 36:102477

  • Shariatipour N, Heidari B, Tahmasebi A, Richards C (2021) Comparative genomic analysis of quantitative trait loci associated with micronutrient contents, grain quality and agronomic traits in wheat (Triticum aestivum L.). Front Plant Sci 12:709817

    PubMed  PubMed Central  Google Scholar 

  • Sharma P, Aggarwal P, Kaur A (2017) Biofortification: a new approach to eradicate hidden hunger. Food Rev Intl 33(1):1–21

    CAS  Google Scholar 

  • Sharma R, Bakshi P, Kumar R, Sharma A, Thakur N, Kumar V, Gheware KM (2023) Enhancing nutritional value in fruit crops through biofortification: a comprehensive review. Indian J Agric Sci 93(11):1167–1174

    CAS  Google Scholar 

  • Shi J, Wang H, Wu Y, Hazebroek J, Meeley RB, Ertl DS (2003) The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol 131(2):507–515. https://doi.org/10.1104/pp.014258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Wang H, Hazebroek J, Ertl DS, Harp T (2005) The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J 42(5):708–719. https://doi.org/10.1111/j.1365-313X.2005.02412.x

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM et al (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25(8):930–937. https://doi.org/10.1038/nbt1322

    Article  CAS  PubMed  Google Scholar 

  • Singh U, Praharaj CS, Chaturvedi SK, Bohra A (2016) Biofortification: Introduction, approaches, limitations, and challenges. Biofortification of food crops. Springer, New Delhi, 3–18.  https://doi.org/10.1007/978-81-322-2716-8_1

  • Singh D, Prasanna R (2020) Potential of microbes in the biofortification of Zn and Fe in dietary food grains. a review. Agron Sustain Dev 40:1–21

    CAS  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, de Abreu Waldow V, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39

    CAS  PubMed  Google Scholar 

  • Srinivas KR, Anand PK, Babu S (2023) Biofortification: A responsible research and innovation strategy for the G20. T20 Policy Brief October 2023

  • Stetkiewicz S, Menary J, Nair A, Rufino MC, Fischer AR, Cornelissen M, Lemarié S (2023) Crop improvements for future-proofing European food systems: a focus-group-driven analysis of agricultural production stakeholder priorities and viewpoints. Food Energy Secur 12(1):e362

    Google Scholar 

  • Sun Y et al (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    PubMed  PubMed Central  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swamy BPM, Rahman MA, Inabangan-Asilo MA, Amparado A, Manito C, Chadha-Mohanty P, et al. (2016) Advances in breeding for high grain zinc in rice. Rice 9:49. https://doi.org/10.1186/s12284-016-0122-5

  • Takahashi M, Nakanishi H, Kawasaki S, Nishizawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat Biotechnol 19:466–469. https://doi.org/10.1038/88143

    Article  CAS  PubMed  Google Scholar 

  • Tan ZHG (2018) The characterisation of CaNAS2 and biofortification of chickpea (Doctoral dissertation, Queensland University of Technology). https://doi.org/10.5204/thesis.eprints.116158

  • UNICEF (2007) The United Nations Children’s Fund. Vitamin A supplementation: a decade of progress. UNICEF, New York

  • UNICEF (2013) The United Nations Children’s Fund (UNICEF), UNICEF Annual Report 2012. June 2013

  • Trijatmiko K, Duenas C, Tsakirpaloglou N, Torrizo L, Arines FM, Adeva C et al (2016) Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci Rep 6(1):19792. https://doi.org/10.1038/srep19792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner A, Seemann K (2012) Clarifying food education toward innovation and design for the global green new deal. Food Stud: an Interdiscip J 1(1):45–56

    Google Scholar 

  • Uppal C, Kaur A, Sharma C (2021) Genome engineering for nutritional improvement in pulses. In: Upadhyay SK, editor. Genome Engineering for Crop Improvement. Hoboken, NJ. p 157–80. https://doi.org/10.1002/9781119672425.ch10

  • Ul din K, Naeem MS., Zulifqar U, Albadrani GM, Waraich EA, Hussain S (2023) Nanoparticles based biofortification in food crops: overview, implications, and prospects. Mineral biofortification in crop plants for ensuring food security, pp.173–201

  • Vachon S, Klassen RD (2006) Extending green practices across the supply chain: the impact of upstream and downstream integration. Int J Oper Prod Manag 26(7):795–821

    Google Scholar 

  • Vachon S, Klassen RD (2008) Environmental management and manufacturing performance: the role of collaboration in the supply chain. Int J Prod Econ 111(2):299–315

    Google Scholar 

  • Van Der Straeten D, Bhullar NK, De Steur H, Gruissem W, MacKenzie D, Pfeiffer W, Tohme J (2020) Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat Commun 11(1):5203

    PubMed  Google Scholar 

  • Varshney RK, Bohra A, Roorkiwal M, Barmukh R, Cowling WA, Chitikineni A et al (2021a) Fast-forward breeding for a food-secure world. Trends Genet 37:1124–1136. https://doi.org/10.1016/j.tig.2021.08.002

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME (2021b) Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci 26:631–649. https://doi.org/10.1016/j.tplants.2021.03.010

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S et al (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378. https://doi.org/10.1016/S0168-9452(02)00421-1

    Article  CAS  Google Scholar 

  • Virk PS, Andersson MS, Arcos J, Govindaraj M, Pfeiffer WH (2021) Transition from targeted breeding to mainstreaming of biofortification traits in crop improvement programs. Front Plant Sci 12:703990

    PubMed  PubMed Central  Google Scholar 

  • Wang JY, Doudna JA (2023) CRISPR technology: a decade of genome editing is only the beginning. Science 379(6629):p.eadd8643

    Google Scholar 

  • Wang C, Zeng J, Li Y, Hu W, Chen L, Miao Y, Deng P, Yuan C, Ma C, Chen X, Zang M (2014) Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Botany 65(9):2545–2556

    CAS  Google Scholar 

  • Wang H et al (2019) CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea Batatas) for the improvement of starch quality. Int J Mol Sci 20:4702

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2016a) What is malnutrition? Online Q&A. http://www.who.int/features/qa/malnutrition/en/. Accessed 5 Aug 2017

  • WHO (2016b) WHO recommendations on antenatal care for a positive pregnancy experience.World Health Organization, Geneva. http://www.who.int/reproductivehealth/publications/maternal_perinatal_health/anc-positive-pregnancy-experience/en/. Accessed 05 Aug 2017

  • WHO (2022) UN Report: Global hunger numbers rose to as many as 828 million in 2021. World Health Organization (WHO): Geneva, Switzerland

  • Xiaoyan S, Yan Z, Shubin W (2012) Improvement Fe content of wheat (Triticum aestivum) grain by soybean ferritin expression cassette without vector backbone sequence. J Agric Biotechnol 20:766–773

    Google Scholar 

  • Yang QQ, Yu WH, Wu HY, Zhang CQ, Sun SSM, Liu QQ (2021) Lysine biofortification in rice by modulating feedback inhibition of aspartate kinase and dihydrodipicolinate synthase. Plant Biotechnol J 19:490–501. https://doi.org/10.1111/pbi.13478

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Han N, Liu C, Buerte B, Zhou C, Chen J et al (2020) Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Ann Bot 126(5):929–942. https://doi.org/10.1093/aob/mcaa115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B (2020) CRISPR/Cas gene therapy. J Cell Physiol 236(4):2459–2481

    PubMed  Google Scholar 

  • Zhang K et al (2019) Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L) using CRISPR-Cas9 system. Biotechnol Biofuels 12:225

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Zhang Z, Unver T, Zhang B (2021) CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 29:207–221

    CAS  PubMed  Google Scholar 

  • Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y et al (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS ONE 5(4):e10190. https://doi.org/10.1371/journal.pone.0010190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng T, Qin B, Li S, Cai M, Pan H, Wang J, Zhang Q (2019) Screening of applicable SSR molecular markers linked to creeping trait in crape Myrtle. Forests 10(5):429

    Google Scholar 

  • Zhou W, Zhou Y, Wang Z, Li Y, Liu H, Cui F et al (2020) Comparative transcriptome analysis in three sorghum (Sorghum bicolor) cultivars reveal genomic basis of differential seed quality. Plant Biosyst 156:232–241. https://doi.org/10.1080/11263504.2020.1851790

    Article  Google Scholar 

  • Zulfiqar U, Hussain S, Ishfaq M, Matloob A, Ali N, Ahmad M, Alyemeni MN, Ahmad P (2020a) Zinc-induced effects on productivity, zinc use efficiency and grain biofortification of bread wheat under different tillage permutations. Agronomy 10(10):1566

  • Zulfiqar U, Maqsood M, Hussain S, Anwar-ul-Haq M (2020b) Iron nutrition improves productivity, profitability and biofortification of bread wheat under conventional and conservation tillage systems. J Soil Sci Plant Nutr 20:1298–1310

  • Zulfiqar U, Hussain S, Ishfaq M, Ali N, Ahmad M, Ihsan F, Sheteiwy MS, Rauf A, Hano C, El-Esawi MA (2021a) Manganese supply improves bread wheat productivity, economic returns and grain biofortification under conventional and no tillage systems. Agriculture 11(2):142

    CAS  Google Scholar 

  • Zulfiqar U, Hussain S, Ishfaq M, Ali N, Yasin MU, Ali MA (2021b) Foliar manganese supply enhances crop productivity, net benefits and grain manganese accumulation in direct-seeded and puddled transplanted rice. J Plant Growth Regul 40:1539–1556

    CAS  Google Scholar 

  • Zulfiqar U, Hussain S, Maqsood M, Ishfaq M, Ali N (2021c) Zinc nutrition to enhance rice productivity, zinc use efficiency and grain biofortification under different production systems. Crop Sci 61(1):739–749

    CAS  Google Scholar 

  • Zulfiqar U, Hussain S, Maqsood M, Zamir SI, Ishfaq M, Ali N, Ahmad M, Maqsood MF (2021d) Enhancing the accumulation and bioavailability of iron in rice grains via agronomic interventions. Crop Pasture Sci. https://doi.org/10.1071/CP21140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

U.Z., A.K., M.S., and M.F.M conceived the idea and planned and wrote the work. N.N., M.S., and S.M. collected the data and assisted in table and figure presentation while S.H., M.A., and S.S. edited the draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Usman Zulfiqar or Muhammad Faisal Maqsood.

Ethics declarations

Ethics approval

The authors declare that all the permissions or licenses were obtained to collect the data and that all study complies with relevant institutional, national and international guidelines, and legislation for research ethics.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, U., Khokhar, A., Maqsood, M.F. et al. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 24, 34 (2024). https://doi.org/10.1007/s10142-024-01308-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01308-z

Keywords

Navigation