Skip to main content

Advertisement

Log in

Differential regulation of hippocampal transcriptome by circulating estrogen

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data analyzed and related to the publication of this manuscript are available from the corresponding author upon reasonable request. The RNA-seq data will be deposited to NCBI upon acceptance of the manuscript.

References

  • Abraham CR et al (2016) Klotho Is a Neuroprotective and Cognition-Enhancing Protein. Vitam Horm 101:215–238

    Article  CAS  PubMed  Google Scholar 

  • Adeli S et al (2017) Simvastatin enhances the hippocampal klotho in a rat model of streptozotocin-induced cognitive decline. Prog Neuropsychopharmacol Biol Psychiatry 72:87–94

    Article  CAS  PubMed  Google Scholar 

  • Akama KT et al (2013) Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. J Biol Chem 288(9):6438–6450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alemi M et al (2016) Transthyretin participates in beta-amyloid transport from the brain to the liver--involvement of the low-density lipoprotein receptor-related protein 1? Sci Rep 6:20164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alshehri B et al (2015) The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol 27(5):303–323

    Article  CAS  PubMed  Google Scholar 

  • Alvira-Botero X et al (2010) Megalin interacts with APP and the intracellular adapter protein FE65 in neurons. Mol Cell Neurosci 45(3):306–15

  • Antov MI, Stockhorst U (2018) Women with high estradiol status are protected against declarative memory impairment by pre-learning stress. Neurobiol Learn Mem 155:403–411

    Article  CAS  PubMed  Google Scholar 

  • Beck KD, Luine VN (2010) Evidence for sex-specific shifting of neural processes underlying learning and memory following stress. Physiol Behav 99(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Bloch M et al (2022) Cognitive processing of emotional information during menstrual phases in women with and without postpartum depression: differential sensitivity to changes in gonadal steroids. Arch Womens Ment Health 25(4):753–762

    Article  PubMed  Google Scholar 

  • Boksha IS et al (2017) Klotho Protein: Its Role in Aging and Central Nervous System Pathology. Biochemistry (Mosc) 82(9):990–1005

    Article  CAS  PubMed  Google Scholar 

  • Bouret S et al (2002) Regulation by gonadal steroids of the mRNA encoding for a type I receptor for TGF-beta in the female rat hypothalamus. Neuroendocrinology 76(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Brouillette J, Quirion R (2008) Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol Aging 29(11):1721–32

  • Clinton SM et al (2013) Expression of klotho mRNA and protein in rat brain parenchyma from early postnatal development into adulthood. Brain Res 1527:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dean B, Gogos A (2021) The impact of ovariectomy and chronic estrogen treatment on gene expression in the rat cortex: Implications for psychiatric disorders. Psychoneuroendocrinology 127:105192

    Article  CAS  PubMed  Google Scholar 

  • Doggui S et al (2010) Possible involvement of transthyretin in hippocampal beta-amyloid burden and learning behaviors in a mouse model of Alzheimer’s disease (TgCRND8). Neurodegener Dis 7(1-3):88–95

  • Fan L et al (2010) Estradiol-induced object memory consolidation in middle-aged female mice requires dorsal hippocampal extracellular signal-regulated kinase and phosphatidylinositol 3-kinase activation. J Neurosci 30(12):4390–4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang XX et al (2018) TGF-beta1 protection against Abeta1-42-induced hippocampal neuronal inflammation and apoptosis by TbetaR-I. Neuroreport 29(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH et al (2013) Expression of GABAA alpha2-, beta1- and epsilon-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry 3:e303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming CE et al (2009) Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J Neurosci 29(10):3220–32

  • Fortress AM et al (2013) Estradiol-induced object recognition memory consolidation is dependent on activation of mTOR signaling in the dorsal hippocampus. Learn Mem 20(3):147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franceschelli A et al (2015) Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and "depressed" mice exposed to chronic mild stress. Neuroscience 290:49–60

    Article  CAS  PubMed  Google Scholar 

  • Frick KM (2015) Molecular mechanisms underlying the memory-enhancing effects of estradiol. Horm Behav 74:4–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garland P et al (2008) Expression of the MAST family of serine/threonine kinases. Brain Res 1195:12–19

    Article  CAS  PubMed  Google Scholar 

  • Han X et al (2013) Role of estrogen receptor alpha and beta in preserving hippocampal function during aging. J Neurosci 33(6):2671–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo-Lopez E et al (2020) Human menstrual cycle variation in subcortical functional brain connectivity: a multimodal analysis approach. Brain Struct Funct 225(2):591–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Hidalgo-Lopez E et al (2021) Spectral dynamic causal modelling in healthy women reveals brain connectivity changes along the menstrual cycle. Commun Biol 4(1):954

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffman LA et al (2017) The Association Between Peer and Self-Assessments and Professionalism Lapses Among Medical Students. Eval Health Prof 40(2):219–243

    Article  PubMed  Google Scholar 

  • Hojo Y et al (2015) Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: Involvement of kinase networks. Horm Behav 74:149–156

    Article  CAS  PubMed  Google Scholar 

  • Hollis F et al (2011) Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Horm Behav 59(3):331–337

    Article  CAS  PubMed  Google Scholar 

  • Iqbal J et al (2020) Estradiol Alters Hippocampal Gene Expression during the Estrous Cycle. Endocr Res 45(2):84–101

    Article  CAS  PubMed  Google Scholar 

  • Koorneef LL et al (2018) How Metabolic State May Regulate Fear: Presence of Metabolic Receptors in the Fear Circuitry. Front Neurosci 12:594

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramar EA et al (2013) Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience 239:3–16

    Article  CAS  PubMed  Google Scholar 

  • Krause DN et al (2021) Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 17(10):621–633

    Article  CAS  PubMed  Google Scholar 

  • Kuang X et al (2014) Klotho upregulation contributes to the neuroprotection of ligustilide in an Alzheimer's disease mouse model. Neurobiol Aging 35(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Li D, Zhang L, Wang X (2022) The effect of menstrual cycle phases on approach-avoidance behaviors in women: evidence from conscious and unconscious processes. Brain Sci 12(10):1417. https://doi.org/10.3390/brainsci12101417

  • Li Q et al (2017) Klotho regulates CA1 hippocampal synaptic plasticity. Neuroscience 347:123–133

    Article  CAS  PubMed  Google Scholar 

  • Li X et al (2021) Sex-specific Regulation of Spine Density and Synaptic Proteins by G-protein-coupled Estrogen Receptor (GPER)1 in Developing Hippocampus. Neuroscience 472:35–50

    Article  CAS  PubMed  Google Scholar 

  • Lip GYH et al (2017) Anticoagulation Control in Warfarin-Treated Patients Undergoing Cardioversion of Atrial Fibrillation (from the Edoxaban Versus Enoxaparin-Warfarin in Patients Undergoing Cardioversion of Atrial Fibrillation Trial). Am J Cardiol 120(5):792–796

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS (2016) Stress-induced remodeling of hippocampal CA3 pyramidal neurons. Brain Res 1645:50–54

    Article  CAS  Google Scholar 

  • McEwen BS, Gray JD, Nasca C (2015) 60 Years of neuroendocrinology: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol 226(2):T67–T83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McEwen BS et al (2012) Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms. Behav Neurosci 126(1):4–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami G et al (2006) Role of cytochrome p450 in synaptocrinology: endogenous estrogen synthesis in the brain hippocampus. Drug Metab Rev 38(3):353–369

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HD et al (2022) 1,2-Diacetylbenzene impaired hippocampal memory by activating proinflammatory cytokines and upregulating the prolactin pathway: An in vivo and in vitro study. Int Immunopharmacol 108:108901

    Article  CAS  PubMed  Google Scholar 

  • Park JW et al (2009) Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 401(1-2):90–99

    Article  CAS  PubMed  Google Scholar 

  • Pierce JP et al (2014) Hippocampal mossy fiber leu-enkephalin immunoreactivity in female rats is significantly altered following both acute and chronic stress. J Chem Neuroanat 55:9–17

    Article  CAS  PubMed  Google Scholar 

  • Pineles SL et al (2016) Extinction retention and the menstrual cycle: Different associations for women with posttraumatic stress disorder. J Abnorm Psychol 125(3):349–355

    Article  PubMed  Google Scholar 

  • Popoli M et al (2011) The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13(1):22–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Salas AA et al (2017) Short versus Extended Duration of Trophic Feeding to Reduce Time to Achieve Full Enteral Feeding in Extremely Preterm Infants: An Observational Study. Neonatology 112(3):211–216

    Article  PubMed  Google Scholar 

  • Sarvari M et al (2015) Hippocampal Gene Expression Is Highly Responsive to Estradiol Replacement in Middle-Aged Female Rats. Endocrinology 156(7):2632–2645

    Article  CAS  PubMed  Google Scholar 

  • Sarvari M et al (2016) Long-Term Estrogen Receptor Beta Agonist Treatment Modifies the Hippocampal Transcriptome in Middle-Aged Ovariectomized Rats. Front Cell Neurosci 10:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE et al (2003) Hippocampal excitability increases during the estrous cycle in the rat: a potential role for brain-derived neurotrophic factor. J Neurosci 23(37):11641–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JA et al (2016) Activation of classical estrogen receptor subtypes reduces tight junction disruption of brain endothelial cells under ischemia/reperfusion injury. Free Radic Biol Med 92:78–89

    Article  CAS  PubMed  Google Scholar 

  • Shusterman M et al (2018) The association between ABO blood types and venous thromboembolism in individuals with a positive antiphospholipid profile is varied by sex. Lupus 27(2):319–326

    Article  CAS  PubMed  Google Scholar 

  • Smeeth DM et al (2021) Prolactin, Estradiol and Testosterone Differentially Impact Human Hippocampal Neurogenesis in an In Vitro Model. Neuroscience 454:15–39

    Article  CAS  PubMed  Google Scholar 

  • Song S et al (2022) Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 237:108168

    Article  CAS  PubMed  Google Scholar 

  • Spencer JL et al (2008) Estrous cycle regulates activation of hippocampal Akt, LIM kinase, and neurotrophin receptors in C57BL/6 mice. Neuroscience 155(4):1106–1119

    Article  CAS  PubMed  Google Scholar 

  • Srivastava DP, Woolfrey KM, Penzes P (2013) Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 65(4):1318–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumner RL et al (2018) Neural plasticity is modified over the human menstrual cycle: Combined insight from sensory evoked potential LTP and repetition suppression. Neurobiol Learn Mem 155:422–434

    Article  CAS  PubMed  Google Scholar 

  • Tada H et al (2015) Estrous Cycle-Dependent Phasic Changes in the Stoichiometry of Hippocampal Synaptic AMPA Receptors in Rats. PLoS One 10(6):e0131359

    Article  PubMed  PubMed Central  Google Scholar 

  • Verbitsky M et al (2004) Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice. Learn Mem 11(3):253–260

    Article  PubMed  PubMed Central  Google Scholar 

  • Vierk R, Brandt N, Rune GM (2014) Hippocampal estradiol synthesis and its significance for hippocampal synaptic stability in male and female animals. Neuroscience 274:24–32

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2018) PAK2 Haploinsufficiency Results in Synaptic Cytoskeleton Impairment and Autism-Related Behavior. Cell Rep 24(8):2029–2041

    Article  PubMed  Google Scholar 

  • Warfvinge K et al (2020) Estrogen receptors alpha, beta and GPER in the CNS and trigeminal system - molecular and functional aspects. J Headache Pain 21(1):131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen JY et al (2018) Estrogen levels, emotion regulation, and emotional symptoms of women with premenstrual dysphoric disorder: The moderating effect of estrogen receptor 1alpha polymorphism. Prog Neuropsychopharmacol Biol Psychiatry 82:216–223

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara C et al (2021) Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep 35(9):109204

    Article  CAS  PubMed  Google Scholar 

  • Zhang M et al (2021) Estrogen Receptors Alpha and Beta Mediate Synaptic Transmission in the PFC and Hippocampus of Mice. Int J Mol Sci 22(3):1485. https://doi.org/10.3390/ijms22031485

Download references

Acknowledgments

None.

Funding

This work was supported by grants from the National Natural Science Foundation of China (32250410298), the Science and Technology Planning Project of Shenzhen Municipality (KCXFZ20211020164543007, 20210617155253001), the Fund of Development and Reform Commission of Shenzhen Municipality (XMHT20220104028), the Guangdong Basic and Applied Basic Research Foundation (2021A1515012141) and the Shenzhen Fund for Guangdong Provincial High-level Clinical Key Specialties (SZGSP013).

Author information

Authors and Affiliations

Authors

Contributions

Author JI and MBB designed and performed the experiment. JI, and JZKK analyzed the data. JI and MBB wrote the original draft of the manuscript. JI, HGD, XJJ, YM, XYX, and JZKK helped in proofreading. All authors read and accepted the final version of this manuscript.

Corresponding authors

Correspondence to Mei Yang or Xiao-Jian Jia.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

All authors declare that they have no conflicts of interest concerning the publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary Table 1. List of Primers used in Real-Time quantitative PCR. (DOCX 18 kb)

ESM 2

Supplementary Table 2. List of estrogen-regulated differentially expressed genes (DEGs) of proestrus (PE) and diestrus (DE) stages involved in cellular, molecular and biological pathways. (XLSX 91 kb)

ESM 3

Supplementary Table 3. List of all KEGG pathways enrichment regulated by the differentially expressed genes (DEGs) of proestrus (PE) and diestrus (DE) stages. (XLS 45 kb)

ESM 4

Supplementary Table 4. The top significant enrichment of KEGG pathways regulated by the differentially expressed genes (DEGs) of proestrus (PE) and diestrus (DE) stages. (XLS 26 kb)

ESM 5

Supplementary Fig. 1. Classification of estrogen-regulated differentially expressed genes (DEGs) into cellular, molecular and biological processes. (PDF 156 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, J., Bibi, M., Huang, GD. et al. Differential regulation of hippocampal transcriptome by circulating estrogen. Funct Integr Genomics 23, 309 (2023). https://doi.org/10.1007/s10142-023-01234-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01234-6

Keywords

Navigation