Skip to main content
Log in

Antler-derived microRNA PC-5p-1090 inhibits HCC cell proliferation, migration, and invasion by targeting MARCKS, SMARCAD1, and SOX9

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The capability of microRNAs (miRNAs) to regulate gene expression across species has opened new avenues for miRNA-based therapeutics. Here, we investigated the potential of PC-5p-1090 (miR-PC-1090), a miRNA found in deer antlers, to control the malignant phenotypes of hepatocellular carcinoma (HCC) cells. Using Cell Counting Kit-8 and transwell assays, we found that heterologous expression of miR-PC-1090 inhibited HCC cell proliferation, migration, and invasion. Bioinformatics analysis indicated that predicted miR-PC-1090 targets, including MARCKS, SMARCAD1, and SOX9, were significantly elevated in HCC tissues, and their high expressions were associated with poor overall survival of HCC patients. Moreover, mechanistic investigations revealed that miR-PC-1090 promoted the degradation of MARCKS and SMARCAD1 mRNAs and hindered the translation of SOX9 mRNA by recognizing their 3′ untranslated regions. Subsequent loss-of-function and rescue experiments confirmed the involvement of MARCKS, SMARCAD1, and SOX9 in miR-PC-1090-suppressed HCC cell proliferation, migration, and invasion. Notably, MARCKS knockdown induced the downregulation of phosphorylated MARCKS and a corresponding upregulation of phosphorylated AKT in HCC. Conversely, miR-PC-1090 repressed MARCKS phosphorylation and effectively circumvented the activation of the PI3K/AKT pathway. Furthermore, miR-PC-1090 regulates the Wnt/β-catenin pathway through SMARCAD1- and SOX9-mediated reduction of β-catenin expression. Overall, our results illustrate the tumor-suppressive activity and molecular mechanism of antler-derived miR-PC-1090 in HCC cells, indicating its potential as a multiple-target agent for HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data and materials supporting the conclusions were included in the main paper.

References

Download references

Acknowledgements

The results published here are partly based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31671283 to DZ) and the Fundamental Research Funds for the Central Universities (Grant No. 2572019AA11 to JW).

Author information

Authors and Affiliations

Authors

Contributions

DZ, XDL, JW, and YXC conceived and designed the project. JW and FY performed experiments. MDZ constructed the plasmids. HX conducted the luciferase reporter assay of SOX9 3′ UTR. JW and FY conducted data and visualization analysis. JW and FY wrote and revised the manuscript.

Corresponding authors

Correspondence to Xuedong Liu or Dong Zheng.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Yang, F., Zhao, M. et al. Antler-derived microRNA PC-5p-1090 inhibits HCC cell proliferation, migration, and invasion by targeting MARCKS, SMARCAD1, and SOX9. Funct Integr Genomics 23, 156 (2023). https://doi.org/10.1007/s10142-023-01089-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01089-x

Keywords

Navigation