Skip to main content
Log in

Targeting TtVgR via siRNA Knockdown Elicits Ovarian Cell Death in the Tri-spine Horseshoe Crab

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The vitellogenin present in the bloodstream undergoes internalization into developing oocytes through the vitellogenin receptor (VgR), a process mediated by receptor-mediated endocytosis. VgR plays a crucial role in facilitating the accumulation of vitellogenin and the maturation of oocytes. In this study, we characterized a Tachypleus tridentatus vitellogenin receptor (TtVgR) gene from the tri-spine horseshoe crab, revealing a length of 1956 bp and encoding 652 amino acid residues with 12 exons. TtVgR has a molecular weight of 64.26 kDa and an isoelectric point of 5.95. Predictions indicate 85 phosphorylation sites and 7 glycosylation sites within TtVgR. Transcriptional analysis demonstrated specific expression of TtVgR in the ovary and yellow connective tissue. TtVgR was identified and distributed in the plasma membrane of oocytes. The siRNA-mediated TtVgR knockdown significantly reduced the transcriptional activity of TtVgR. This depletion induced excessive ROS production, resulting in DNA damage in ovarian primary cells. TUNEL and flow cytometry analyses confirmed ovarian cell apoptosis following TtVgR knockdown, indicating DNA damage in ovarian primary cells. These findings underscore the importance of TtVgR in ovarian cell development, suggesting its potential involvement in vitellogenesis and oocyte maturation. This knowledge may inform innovative breeding strategies and contribute to the sustainable management and conservation of the tri-spine horseshoe crab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Bai H, Qiao H, Li F, Fu H, Jiang S, Zhang W, Yan Y, Xiong Y, Sun S, Jin S, Gong Y (2016) Molecular and functional characterization of the vitellogenin receptor in oriental river prawn, Macrobrachium nipponense. Comp Biochem Physiol A Mol Integr Physiol 194:45–55

    Article  CAS  PubMed  Google Scholar 

  • Cheng CH, Su YL, Ma HL, Deng YQ, Feng J, Chen XL, Jie YK, Guo ZX (2020) Effect of nitrite exposure on oxidative stress, DNA damage and apoptosis in mud crab (Scylla paramamosain). Chemosphere 239:124668

    Article  CAS  PubMed  Google Scholar 

  • Ciudad L, Piulachs MD, Bellés X (2006) Systemic RNAi of the cockroach vitellogenin receptor results in a phenotype similar to that of the Drosophila yolkless mutant. FEBS J 273:325–335

    Article  CAS  PubMed  Google Scholar 

  • Cong L, Yang WJ, Jiang XZ, Niu JZ, Shen GM, Ran C, Wang JJ (2015) The essential role of vitellogenin receptor in ovary development and vitellogenin uptake in Bactrocera dorsalis (Hendel). Int J Mol Sci 16:18368–18383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davail B, Pakdel F, Bujo H, Perazzolo LM, Waclawek M, Schneider WJ, Le Menn F (1998) Solution of oogenesis: the receptor for vitellogenin from the rainbow trout. J Lipid Res 39:1929–1937

    Article  CAS  PubMed  Google Scholar 

  • Ding JL, Lim EH, Li HF, Kumar JK, Lee SL, Lam TJ (2004) Expression of recombinant vitellogenin in the yeast Pichia pastoris. Biotechnol Bioeng 85:330–339

    Article  CAS  PubMed  Google Scholar 

  • Fleisher TA, Oliveira JB (2019) Flow cytometry. In Rich RR, Fleisher TA, Shearer WT, Schroeder HW, Frew AJ, Weyand CM (eds) Clinical immunology: Principles and Practice (5th Edition). Elsevier, pp. 1239–1251

  • Gauvry G (2015) Current horseshoe crab harvesting practices cannot support global demand for TAL/LAL: the pharmaceutical and medical device industries’ role in the sustainability of horseshoe crabs. In: Carmichael R, Botton M, Shin P, Cheung S (eds) Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management. Springer, Cham. pp.475–82.

  • Jugan P, Soyez D (1985) Demonstration in vitro de l’inhibition de l’endocytose ovocytaire par un extrait de glande de sinus chez la crevette Macrobrachium rosenbergii. CR Acad Sci Paris Ser III 300:705–709

    Google Scholar 

  • Klinbunga S, Sittikankaew K, Jantee N, Prakopphet S, Janpoom S, Hiransuchalert R, Menasveta P, Khamnamtong B (2015) Expression levels of vitellogenin receptor (Vtgr) during ovarian development and association between its single nucleotide polymorphisms (SNPs) and reproduction-related parameters of the giant tiger shrimp Penaeus monodon. Aquaculture 435:18–27

    Article  CAS  Google Scholar 

  • Kung SY, Chan SM, Hui JH, Tsang WS, Mak A, He JG (2004) Vitellogenesis in the sand shrimp, Metapenaeus ensis: the contribution from the hepatopancreas-specific vitellogenin gene (MeVg2). Biol Reprod 71:863–870

    Article  CAS  PubMed  Google Scholar 

  • Laverdure AM, Soyez D (1988) Vitellogenin receptor from lobster oocyte membrane: solubilization and characterization by solid phase binding assay. Int J Invert Reprod Develop 13:251–266

    Article  CAS  Google Scholar 

  • Li A, Sadasivam M, Ding JL (2003) Receptor-ligand interaction between vitellogenin receptor (VtgR) and vitellogenin (Vtg), implications on low density lipoprotein receptor and apolipoprotein B/E. The first three ligand- binding repeats of VtgR interact with the amino-terminal region of Vtg. J Biol Chem 278:2799–2806

    Article  CAS  PubMed  Google Scholar 

  • Liang J, Wang Y, Duan Y, Ge Q, Li J, Li J, Liu P, Nie G (2015) Molecular cloning of ecdysteroid receptor and its expression during the ovarian development and embryogenesis of Exopalaemon carinicauda. J Fish China 39:942–952

    CAS  Google Scholar 

  • Lim EH, Ding JL, Lam TJ (1991) Estradiol-induced vitellogenin gene expression in a teleost fish Oreochromis aureus. Gen Compr Endocrinol 82:206–214

    Article  CAS  Google Scholar 

  • Lim EH, Lam TJ, Ding JL (2005) Single-cell protein diet of a novel recombinant vitellogenin yeast enhances growth and survival of first-feeding tilapia (Oreochromis mossambicus) larvae. J Nutr 135:513–518

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Cui J, Yan J, Cai S (2014) Cloning and relative quantification analysis of expression of the partial vitellogenin receptor cDNA/m RNA of the crayfish Procambarus clarkii. Prog Fish Sci 35:83–89

    Google Scholar 

  • Mestrum SG, Hopman AH, Ramaekers FC, Leers MP (2021) The potential of proliferative and apoptotic parameters in clinical flow cytometry of myeloid malignancies. Blood Adv 5:2040–2052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzayans R, Murray D (2020) Do TUNEL and other apoptosis assays detect cell death in preclinical studies? Int J Mol Sci 21:9090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell Iii RD, Ross E, Osgood C, Sonenshine DE, Donohue KV, Khalil SM, Thompson DM, Roe RM (2007) Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick. Insect Biochem Mol Biol 37:375–388

    Article  Google Scholar 

  • Namgung J, Mizuta H, Yamaguchi Y, Nagata J, Todo T, Yilmaz O, Hiramatsu N (2021) Knock out of a major vitellogenin receptor gene with eight ligand binding repeats in medaka (Oryzias latipes) using the CRISPR/Cas9 system. Comp Biochem Physiol A Mol Integr Physiol 257:110967

    Article  CAS  PubMed  Google Scholar 

  • Roth Z, Khalaila I (2012) Identification and characterization of the vitellogenin receptor in Macrobrachium rosenbergii and its expression during vitellogenesis. Mol Reprod Dev 79:478–487

    Article  CAS  PubMed  Google Scholar 

  • Rudkin DM, Young GA (2009) Horseshoe crabs–an ancient ancestry revealed. Springer, USA, pp 25–44

    Google Scholar 

  • Sappington TW, Raikhel AS (1998) Mini review. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochem Mol Biol 28:277–300

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2018) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101

    Article  Google Scholar 

  • Schneider WJ (1996) Vitellogenin receptors: oocyte-specific members of the low-density lipoprotein receptor supergene family. Int Rev Cytol 166:103–137

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Li L, Li H, Zhou K, Li W, Wang Q (2020) Vitellogenin receptor expression in ovaries controls innate immunity in the Chinese mitten crab (Eriocheir sinensis) by regulating vitellogenin accumulation in the hemolymph. Fish Shellfish Immunol 107:480–489

    Article  CAS  PubMed  Google Scholar 

  • Tan K, Zhou M, Jiang H, Jiang D, Li Y, Wang W (2020a) siRNA-mediated MrIAG silencing induces sex reversal in Macrobrachium rosenbergii. Mar Biotechnol 22:456–466

    Article  CAS  Google Scholar 

  • Tan K, Li Y, Zhou M, Wang W (2020b) siRNA knockdown of MrIR induces sex reversal in Macrobrachium rosenbergii. Aquaculture 523:735172

    Article  CAS  Google Scholar 

  • Tan K, Waiho K, Tan K, Qiao Y, Lim LS, Yang X, Wen Y, Xu P, Peng Y, Ma X, Kwan KY (2023a) Silencing of novel TtVtg6-like induced ovarian cell apoptosis in ancient chelicerate Tachypleus tridentatus. Biochem Biophys Res Commun 679:66–74

    Article  CAS  PubMed  Google Scholar 

  • Tan K, Dong Y, Tan K, Lim LS, Waiho K, Chen J, Xu P, Kwan KY (2023b) siRNA Silencing of FpVtg induces ovarian cell apoptosis in redtail prawn, Fenneropenaeus penicillatus. Mar Biotechnol 27:1–5

    Google Scholar 

  • Tiu SH, Hui JH, Mak AS, He JG, Chan SM (2006) Equal contribution of hepatopancreas and ovary to the production of vitellogenin (PmVg1) transcripts in the tiger shrimp, Penaeus monodon. Aquaculture 254:666–674

    Article  CAS  Google Scholar 

  • Tiu SH, Benzie J, Chan SM (2008) From hepatopancreas to ovary: molecular characterization of a shrimp vitellogenin receptor involved in the processing of vitellogenin. Biol Reprod 79:66–74

    Article  CAS  PubMed  Google Scholar 

  • Tseng DY, Chen YN, Kou GH, Lo CF, Kuo CM (2001) Hepatopancreas is the extraovarian site of vitellogenin synthesis in black tiger shrimp, Penaeus monodon. Comp Biochem Physiol A Mol Integr Physiol 129:909–917

    Article  CAS  PubMed  Google Scholar 

  • Warrier S, Subramoniam T (2002) Receptor mediated yolk protein uptake in the crab Scylla serrata: crustacean vitellogenin receptor recognizes related mammalian serum lipoproteins. Mol Reprod Dev 61:536–548

    Article  CAS  PubMed  Google Scholar 

  • Weng ZH, Xie YJ, Xiao ZQ, Wang ZY (2020) Isolation of microsatellite markers in Tachypleus tridentatus and analysis of their genetic polymorphism and genetic structure. Oceanol Limnol Sinica 51:345–353

    CAS  Google Scholar 

  • Willnow TE (1999) The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism. J Mol Med 77:306–315

    Article  CAS  PubMed  Google Scholar 

  • Xia CW, Hong SG, Guo HS (1998) Studies on formation of yolk granules of Tachypleus tridentatus leach by electron microscope. J Central China Normal University (nat Sci) 32:215–218

    Google Scholar 

  • Zhou X, Chen Q, Chen L, Liao X, Wang Z, Zhu F (2023) The effect of reactive oxygen species (ROS) in immunity and WSSV infection of Scylla paramamosain. Fish Shellfish Immunol 141:109075

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was financially supported by a research grant from the National Natural Science Foundation of China (42366006); High-level Talent Scientific Research Start-Up Fund Project of Beibu Gulf University (2022KYQD10); Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources (2021QN05); and Marine Science Program for Guangxi First-Class Discipline, Beibu Gulf University (DRA002, TRA001).

Author information

Authors and Affiliations

Authors

Contributions

Kianann Tan: Writing – original draft, Funding acquisition, Conceptualization, Resources, Supervision. Xiaowan Ma: Writing – original draft, Funding acquisition, Resources. Boyu Su: Formal analysis, Visualization. Chen Zhan: Formal analysis, Visualization. Xin Yang: Investigation, Methodology. Khor Waiho: Conceptualization. Leong-Seng Lim: Writing – review & editing. Kit Yue Kwan: Project administration, Supervision, Funding acquisition, Resources, Writing – review & editing.

Corresponding author

Correspondence to Kit Yue Kwan.

Ethics declarations

Ethics Approval

All experiments in this study were conducted under a protocol approved by the Institutional Animal Care and Use Committee (IACUC, China).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K., Ma, X., Su, B. et al. Targeting TtVgR via siRNA Knockdown Elicits Ovarian Cell Death in the Tri-spine Horseshoe Crab. Mar Biotechnol (2024). https://doi.org/10.1007/s10126-024-10319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10126-024-10319-7

Keywords

Navigation