Skip to main content
Log in

Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas)

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after l-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that l-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The transcriptome data have been deposited in the Sequence Read Archive (SRA) database with the accession number PRJNA900369 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA900369).

References

  • Aguilera F, McDougall C, Degnan BM (2014) Evolution of the tyrosinase gene family in bivalve molluscs: independent expansion of the mantle gene repertoire. Acta Biomater 10:3855–3865

    Article  CAS  PubMed  Google Scholar 

  • Albalat R (2009) The retinoic acid machinery in invertebrates: ancestral elements and vertebrate innovations. Mol Cell Endocrinol 313:23–35

    Article  CAS  PubMed  Google Scholar 

  • Alberto CO, Trask RB, Hirasawa M (2011) Dopamine acts as a partial agonist for α2A adrenoceptor in melanin-concentrating hormone neurons. J Neurosci 31:10671–10676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auffret P, Le Luyer J, Sham Koua M, Quillien V, Ky CL (2020) Tracing key genes associated with the Pinctada margaritifera albino phenotype from juvenile to cultured pearl harvest stages using multiple whole transcriptome sequencing. BMC Genomics 21:1–14

    Article  Google Scholar 

  • Bandaranayake WM (2006) The nature and role of pigments of marine invertebrates. Nat Prod Rep 23:223–255

    Article  CAS  PubMed  Google Scholar 

  • Barnard W, De Waal D (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J Raman Spectrosc 37:342–352

    Article  CAS  Google Scholar 

  • Bertolotto C, Busca R, Ballotti R, Ortonne JP (2001) Cyclic AMP is a key messenger in the regulation of skin pigmentation. Medecine/sciences 17:177–185

    Article  Google Scholar 

  • Bian C, Li R, Wen Z, Ge W, Shi Q (2021) Phylogenetic analysis of core melanin synthesis genes provides novel insights into the molecular basis of albinism in fish. Front Genet 12:1–9

    Article  Google Scholar 

  • Bilandžija H, Ma L, Parkhurst A, Jeffery WR (2013) A potential benefit of albinism in Astyanax Cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One 8:e80823

    Article  PubMed  PubMed Central  Google Scholar 

  • Boettiger A, Ermentrout B, Oster G (2009) The neural origins of shell structure and pattern in aquatic mollusks. Proc Natl Acad Sci 106:6837–6842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brake J, Evans F, Langdon C (2004) Evidence for genetic control of pigmentation of shell and mantle edge in selected families of Pacific oysters, Crassostrea gigas. Aquaculture 229:89–98

    Article  Google Scholar 

  • Chen X, Xiao D, Du X, Guo X, Zhang F, Desneux N, Zang L, Wang S (2019) The role of the dopamine melanin pathway in the ontogeny of elytral melanization in Harmonia axyridis. Front Physiol 10:1–8

    Article  Google Scholar 

  • Chen M, Liu B, Ma B, Liu G, Cao W, Liu X, Yan X, Yang B, Wang C (2020) Selection of a carotenoid-rich scallop strain, QN Orange, from the inter-specific hybrids between the bay scallop and the Peruvian scallop. Aquaculture 528:735513

    Article  CAS  Google Scholar 

  • Clancey LF, Beirl AJ, Linbo TH, Cooper CD (2013) Maintenance of melanophore morphology and survival is cathepsin and vps11 dependent in zebrafish. PLoS ONE 8:e65096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Marmol V, Beermann F (1996) Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 381:165–168

    Article  PubMed  Google Scholar 

  • Fang W, Huang J, Li S, Lu J (2022) Identification of pigment genes (melanin, carotenoid and pteridine) associated with skin color variant in red tilapia using transcriptome analysis. Aquaculture 547:737429

    Article  CAS  Google Scholar 

  • Florou D, Scorilas A, Vassilacopoulou D, Fragoulis E (2012) DDC (dopa decarboxylase (aromatic L-amino acid decarboxylase)). Atlas Genet Cytogenet Oncol Haematol 14:942–950

    Google Scholar 

  • Fu L, Shi H, Dai W, Yao H, Bao Y, Lin Z, Dong Y (2021) Characterization and function analysis of β, β-carotene-9′, 10′-oxygenase 2 (BCDO2) gene in carotenoid metabolism of the red shell hard clam (Meretrix meretrix). Front Mar Sci 8:746026

    Article  Google Scholar 

  • Ge J, Li Q, Yu H, Kong L (2014) Identification and mapping of a SCAR marker linked to a locus involved in shell pigmentation of the Pacific oyster (Crassostrea gigas). Aquaculture 434:249–253

    Article  CAS  Google Scholar 

  • Ge J, Li Q, Yu H, Kong L (2015) Mendelian inheritance of golden shell color in the Pacific oyster Crassostrea gigas. Aquaculture 441:21–24

    Article  Google Scholar 

  • Grant HE, Williams ST (2018) Phylogenetic distribution of shell colour in Bivalvia (Mollusca). Biol J Linn Soc 125:377–391

    Article  Google Scholar 

  • Guo X (2009) Use and exchange of genetic resources in molluscan aquaculture. Rev Aquac 1:251–259

    Article  Google Scholar 

  • Han Z, Li Q, Liu S, Kong L (2020) Crossbreeding of three different shell color lines in the Pacific oyster reveals high heterosis for survival but low heterosis for growth. Aquaculture 529:735621

    Article  Google Scholar 

  • Hoang TH, Qin JG, Stone DAJ, Harris JO, Duong DN, Bansemer MS (2016) Colour changes of greenlip abalone (Haliotis laevigata Donovan) fed fresh macroalgae and dried algal supplement. Aquaculture 456:16–23

    Article  CAS  Google Scholar 

  • Huang S, Jiang H, Zhang L, Gu Q, Wang W, Wen Y, Luo F, Jin W, Cao X (2021) Integrated proteomic and transcriptomic analysis reveals that polymorphic shell colors vary with melanin synthesis in Bellamya purificata snail. J Proteomics 230:103950

    Article  CAS  PubMed  Google Scholar 

  • Irion U, Singh AP, Nüsslein-Volhard C (2016) The developmental genetics of vertebrate color pattern formation: lessons from zebrafish. Curr Top Dev Biol 117:141–169

    Article  PubMed  Google Scholar 

  • Jin Q, Huo C, Yang W, Jin K, Cai S, Zheng Y, Huang B, Wei L, Zhang M, Han Y, Zhang X, Liu Y, Wang X (2022) Regulation of tyrosinase gene expression by retinoic acid pathway in the Pacific oyster Crassostrea gigas. Int J Mol Sci 23:12840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Kim JS, Woo JT, Lee IS, Cha BY (2015) Hyperpigmentation mechanism of methyl 3,5-di-caffeoylquinate through activation of p38 and MITF induction of tyrosinase. Acta Biochim Biophys Sin (shanghai) 47:548–556

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ren L, Fu H, Yang B, Tian J, Li Q, Liu Z, Liu S (2021a) Crosstalk between dopamine and insulin signaling in growth control of the oyster. Gen Comp Endocrinol 313:1–9

    Article  Google Scholar 

  • Li Z, Li Q, Liu S, Han Z, Kong L, Yu H (2021b) Integrated analysis of coding genes and non-coding RNAs associated with shell color in the Pacific oyster (Crassostrea gigas). Mar Biotechnol 23:417–429

    Article  CAS  Google Scholar 

  • Li Z, Li Q, Xu C, Yu H (2022) Molecular characterization of Pax7 and its role in melanin synthesis in Crassostrea gigas. Comp Biochem Physiol Part B Biochem Mol Biol 260:110720

    Article  CAS  Google Scholar 

  • Li Z, Hu B, Du L, Hou C, Qi Li (2023a) Involvement of B-aat1 and Cbs in regulating mantle pigmentation in the Pacific oyster (Crassostrea gigas). Mol Biol Rep 50:377–387

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Xu C, Yu H, Kong L, Liu S, Li Q (2023b) Transcription factor CgPOU3F4-like regulates expression of pheomelanin synthesis related gene CgB-aat1 in the Pacific oyster (Crassostrea gigas). Gene 861:147258

    Article  CAS  PubMed  Google Scholar 

  • Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Wang L, Yin H, Zhu W, Fu J, Dong Z (2019) Integrated analysis of long non-coding RNA and mRNA expression in different colored skin of koi carp. BMC Genomics 20:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo M, Lu G, Yin H, Wang L, Atuganile M, Dong Z (2021) Fish pigmentation and coloration: molecular mechanisms and aquaculture perspectives. Rev Aquac 13:2395–2412

    Article  Google Scholar 

  • McCauley DW, Hixon E, Jeffery WR (2016) Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol Dev 6:209–218

    Article  Google Scholar 

  • Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X (2020) Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 112:2011–2020

    Article  CAS  PubMed  Google Scholar 

  • Otrȩba M, Rok J, Buszman E, Wrześniok D (2012) Regulacja melanogenezy: Rola camp i mitf. Postepy Hig Med Dosw 66:33–40

    Google Scholar 

  • Potts RWA, Gutierrez AP, Cortés-Araya Y, Houston RD, Bean TP (2020) Developments in marine invertebrate primary culture reveal novel cell morphologies in the model bivalve Crassostrea gigas. PeerJ 2020:e9180

    Article  Google Scholar 

  • Saenko SV, Schilthuizen M (2021) Evo-devo of shell colour in gastropods and bivalves. Curr Opin Genet Dev 69:1–5

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Dekker FJ, Maarsingh H (2013) Exchange protein directly activated by cAMP (epac): a multidomain camp mediator in the regulation of diverse biological functions. Pharmacol Rev 65:670–709

    Article  PubMed  Google Scholar 

  • Slominski A, Paus R (1994) Towards defining receptors for l-tyrosine and l-DOPA. Mol Cell Endocrinol 99:1987–1991

    Article  Google Scholar 

  • Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    Article  CAS  PubMed  Google Scholar 

  • Slominski A, Zmijewski MA, Pawelek J (2012) L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 25:14–27

    Article  CAS  PubMed  Google Scholar 

  • Song J, Wang C (2019) Transcriptomic and proteomic analyses of genetic factors influencing adductor muscle coloration in QN Orange scallops. BMC Genomics 20:1–10

    Article  Google Scholar 

  • Song J, Wang C (2021) Transcriptomic and metabonomic analyses reveal roles of VPS 29 in carotenoid accumulation in adductor muscles of QN Orange scallops. Genomics 113:2839–2846

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Liu Z, Zhou L, Wu B, Dong Y, Yang A (2016) Integration of next generation sequencing and EPR analysis to uncover molecular mechanism underlying shell color variation in scallops. PLoS ONE 11:e0161876

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun L, Guo Y, Zhang Y, Zhuang Y (2017) Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in B16 mouse melanoma cells. Front Pharmacol 8:1–9

    Article  Google Scholar 

  • Toews DPL, Hofmeister NR, Taylor SA (2017) The evolution and genetics of carotenoid processing in animals. Trends Genet 33:171–182

    Article  CAS  PubMed  Google Scholar 

  • Vavricka CJ, Han Q, Mehere P, Ding H, Christensen BM, Li J (2014) Tyrosine metabolic enzymes from insects and mammals: a comparative perspective. Insect Sci 21:13–19

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhu W, Yang J, Miao L, Dong J, Song F, Dong Z (2018) Effects of dietary cystine and tyrosine on melanogenesis pathways involved in skin color differentiation of Malaysian red tilapia. Aquaculture 490:149–155

    Article  CAS  Google Scholar 

  • Wang X, Ding S, Yin D et al (2020) Response to selection for growth in the second generation of two shell color lines of the bay scallop Argopecten irradians. Aquaculture 528:735536

    Article  CAS  Google Scholar 

  • Williams ST (2017) Molluscan shell colour. Biol Rev 92:1039–1058

    Article  PubMed  Google Scholar 

  • Williams ST, Ito S, Wakamatsu K, Goral T, Edwards NP, Wogelius RA, Henkel T, de Oliveira LFC, Maia LF, Strekopytov S, Jeffries T, Speiser DI, Marsden JT (2016) Identification of shell colour pigments in marine snails Clanculus pharaonius and C. margaritarius (Trochoidea; gastropoda). PLoS One 11:1–25

    Article  CAS  Google Scholar 

  • Xing D, Li Q, Kong L, Yu H (2018) Heritability estimate for mantle edge pigmentation and correlation with shell pigmentation in the white-shell strain of Pacific oyster, Crassostrea gigas. Aquaculture 482:73–77

    Article  Google Scholar 

  • Xing D, Li Q, Zhang J (2019) Genotype by environment (G×E) interaction for growth and shell color traits in the white-shell strain of Pacific oyster (Crassostrea gigas). J Fish China 43:474–482

    Google Scholar 

  • Xu C, Li Q, Chong J, Liu S, Kong L (2019a) Mass selection for growth improvement in black shell line of Pacific oyster Crassostrea gigas. J Ocean Univ China 18:1411–1416

    Article  Google Scholar 

  • Xu C, Li Q, Yu H, Liu S, Kong L, Chong J (2019b) Inheritance of shell pigmentation in Pacific oyster Crassostrea gigas. Aquaculture 512:734249

    Article  Google Scholar 

  • Yamanome T, Chiba H, Takahashi A (2007) Melanocyte-stimulating hormone facilitates hypermelanosis on the non-eyed side of the barfin flounder, a pleuronectiform fish. Aquaculture 270:505–511

    Article  CAS  Google Scholar 

  • Yan X, Nie H, Huo Z et al (2019) Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity. iScience 19:1225–1237

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu W, He C, Cai Z, Xu F, Wei L, Chen J, Jiang Q, Wei N, Li Z, Guo W, Wang X (2017) A preliminary study on the pattern, the physiological bases and the molecular mechanism of the adductor muscle scar pigmentation in pacific oyster Crassostrea gigas. Front Physiol 8:1–11

    Article  Google Scholar 

  • Yu F, Qu B, Lin D, Deng Y, Huang R, Zhong Z (2018) Pax3 gene regulated melanin synthesis by tyrosinase pathway in Pteria penguin. Int J Mol Sci 19:3700

    Article  PubMed  PubMed Central  Google Scholar 

  • Yue X, Nie Q, Xiao G, Liu B (2015) Transcriptome analysis of shell color-related genes in the clam Meretrix meretrix. Mar Biotechnol 17:364–374

    Article  CAS  Google Scholar 

  • Zhang G, Zhang W, Ye R, Fang A, Ren G, Zheng R, Yang S (2016) Analysis of selective breeding of nacre color in two strains of Hyriopsis cumingii Lea based on the cielab colorspace. J Shellfish Res 35:225–229

    Article  Google Scholar 

  • Zhu Y, Li Q, Yu H, Liu S, Kong L (2021) Shell biosynthesis and pigmentation as revealed by the expression of Tyrosinase and Tyrosinase-like protein genes in Pacific oyster (Crassostrea gigas) with different shell colors. Mar Biotechnol 23:777–789

    Article  CAS  Google Scholar 

  • Zhu Y, Li Q, Yu H, Liu S, Kong L (2022) Expression of tyrosinase-like protein genes and their functional analysis in melanin synthesis of Pacific oyster (Crassostrea gigas). Gene 840:1–9

    Article  Google Scholar 

Download references

Funding

This research was supported by grants from the National Key R&D Program of China (2022YFD2400305), National Natural Science Foundation of China (31972789), and China Agriculture Research System Project (CARS-49).

Author information

Authors and Affiliations

Authors

Contributions

Kunyin Jiang: completion of the experiment, data analysis, and manuscript drafting. Qi Li: experimental design and coordination, manuscript revision, and funding acquisition. Chengxun Xu: resources. Hong Yu: resources. Lingfeng Kong: resources. Shikai Liu: investigation.

Corresponding author

Correspondence to Qi Li.

Ethics declarations

Ethics Approval

The C. gigas used in this study are neither an endangered nor protected species. All experiments in this study were conducted according to national and institutional guidelines.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, K., Xu, C., Yu, H. et al. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). Mar Biotechnol 26, 364–379 (2024). https://doi.org/10.1007/s10126-024-10302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-024-10302-2

Keywords

Navigation