Skip to main content
Log in

Enhancement of Squalene Production by Constitutive Expression of the 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Aurantiochytrium sp. 18W-13a

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Squalene has a wide range of applications in the industry sectors of dietary supplements, cosmetics, immunization, and pharmaceuticals. Yet, suitable organisms as the source of squalene are limited. It is reported that the thraustochytrid Aurantiochytrium sp. strain 18W-13a can accumulate high content of squalene. However, squalene production in this organism is fluctuated under various conditions and is not yet optimized for commercialization. In this organism, the mevalonate pathway supplies isopentenyl pyrophosphate, the initial substrate for squalene production. In this pathway, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) is the rate-limiting enzyme. We found that the HMGR activity had a strong positive correlation with the squalene contents in the strain. We constitutively expressed the HMGR in this organism and found that the transformant showed increased and stable production of squalene as well as carotenoids and biomass. These results clearly indicated that the HMGR expression is the bottleneck of squalene synthesis in Aurantiochytrium sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE (2016) Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100:4309–4321

    Article  CAS  PubMed  Google Scholar 

  • Adachi T, Sahara T, Okuyama H, Morita N (2017) Glass bead-based genetic transformation: an efficient method for transformation of thraustochytrid microorganisms. J Oleo Sci 66:791–795

    Article  CAS  PubMed  Google Scholar 

  • Bakes MJ, Nichols PD (1995) Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp Biochem Physiol B, Biochem Mol Biol 110:267–275

    Article  Google Scholar 

  • Basson ME, Thorsness M, Rine J (1986) Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci USA 83:5563–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MS, Goldstein JL (1999) A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci USA 96:11041–11048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MS, Radhakrishnan A, Goldstein JL (2018) Retrospective on cholesterol homeostasis: the central role of Scap. Annu Rev Biochem 87:783–807

    Article  CAS  PubMed  Google Scholar 

  • Chan P, Tomlinson B, Lee CB, Lee YS (1996) Effectiveness and safety of low-dose pravastatin and squalene, alone and in combination, in elderly patients with hypercholesterolemia. J Clin Pharmacol 36:422–427

    Article  CAS  PubMed  Google Scholar 

  • Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun KT, Bar-Nun S, Simoni RD (1990) The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J Biol Chem 265:22004–22010

    Article  CAS  PubMed  Google Scholar 

  • Comey C, Koons B, Presley K, Smerick J, Sobieralski C, Stanley D, Baechtel F (1994) DNA extraction strategies for amplified fragment length polymorphism analysis. J Forensic Sci 39:1254–1269

    Article  CAS  Google Scholar 

  • Conte M, Lupette J, Seddiki K, Meï C, Dolch LJ, Gros V, Barette C, Rébeillé F, Jouhet J, Maréchal E (2018) Screening for biologically annotated drugs that trigger triacylglycerol accumulation in the diatom Phaeodactylum Plant Physiol 177:532–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa CHS, Oliveira ARS, dos Santos AM, da Costa KS, e Lima AHL, Alves CN, Lameira J, (2019) Computational study of conformational changes in human 3-hydroxy-3-methylglutaryl coenzyme reductase induced by substrate binding. J Biomol Struct Dyn 37:4374–4383

    Article  CAS  PubMed  Google Scholar 

  • Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Cigliano RA, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A (2018) Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium Algal Res 35:125–141

    Article  Google Scholar 

  • Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427

    Article  CAS  PubMed  Google Scholar 

  • Ferguson JJ Jr, Durr IF, Rudney H (1959) The biosynthesis of mevalonic acid. Proc Natl Acad Sci USA 45:499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil G, Faust JR, Chin DJ, Goldstein JL, Brown MS (1985) Membrane-bound domain of HMG CoA reductase is required for sterol-enhanced degradation of the enzyme. Cell 41:249–258

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1997) The low-density lipoprotein pathways and its relation to atherosclerosis. Annu Rev Biochem 46:897–930

    Article  Google Scholar 

  • Hampton R, Dimpster-Denk D, Rine J (1996) The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 21:140–145

    Article  CAS  PubMed  Google Scholar 

  • He HP, Cai Y, Sun M, Corke H (2002) Extraction and purification of squalene from Amaranthus grain. J Agric Food Chem 50:368–372

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379

    Article  CAS  PubMed  Google Scholar 

  • Hong WK, Heo SY, Park HM, Kim CH, Sohn JH, Kondo A, Seo JW (2013) Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101. J Microbiol Biotechnol 23:759–765

    Article  CAS  PubMed  Google Scholar 

  • Holstein SA, Hohl RJ (2004) Isoprenoids: remarkable diversity of form and function. Lipids 39:293–309

    Article  CAS  PubMed  Google Scholar 

  • Jiang LY, Jiang W, Tian N, Xiong YN, Liu J, Wei J, Wu KY, Luo J, Shi XJ, Song BL (2018) Ring finger protein 145 (RNF145) is a ubiquitin ligase for sterol-induced degradation of HMG-CoA reductase. J Biol Chem 293:4047–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juntila DJ, Yoneda K, Suzuki I (2019) Genetic modification of the thraustochytrid Aurantiochytrium sp. 18W–13a for cellobiose utilization by secretory expression of beta-glucosidase from Aspergillus aculeatus. Algal Res 40: 101503

  • Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D (2015) Production of squalene by squalene synthases and their truncated mutants in Escherichia coli J Biosci Bioeng 119:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W–13a accumulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K (1995) Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta Lipids Lipid Metab 1256:52–56

    Article  Google Scholar 

  • Liu Y, Tang J, Li J, Daroch M, Cheng JJ (2014) Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Appl Microbiol Biotechnol 98:9643–9652

    Article  CAS  PubMed  Google Scholar 

  • Masferrer A, Arró M, Manzano D, Schaller H, Fernández-Busquets X, Moncaleán P, Fernández B, Cunillera N, Boronat A, Ferrer A (2002) Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase (FPS1S) in transgenic Arabidopsis induces a cell death/senescence-like response and reduced cytokinin levels. Plant J 30:123–132

    Article  CAS  PubMed  Google Scholar 

  • Maurice L, Croizier GL, Morales G, Carpintero N, Guayasamin JM, Sonke J, Páez-Rosas D, Point D, Bustos W, Ochoa-Herrera V (2021) Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: human health concerns and feeding patterns. Ecotoxicol Environ Saf 215

    Article  CAS  PubMed  Google Scholar 

  • Montero-Lobato Z, Ramos-Merchante A, Fuentes JL, Sayago A, Fernández-Recamales Á, Martínez-Espinosa RM, Vega JM, Vílchez C, Garbayo I (2018) Optimization of growth and carotenoid production by Haloferax mediterranei using response surface methodology. Mar Drugs 16:372

    Article  CAS  PubMed Central  Google Scholar 

  • Nakanishi M, Goldstein JL, Brown MS (1988) Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme. J Biol Chem 263:8929–8937

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Ito K, Ueda M, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of biomass and fatty acid production by Aurantiochytrium sp. strain 4W–1b. Procedia Environ Sci 15:27–33

    Article  CAS  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W–13a for squalene production. Bioresour Technol 109:287–291

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Thang DV, Ueda M, Honda D, Mahakhant A, Kaya K, Watanabe MM (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    Article  CAS  Google Scholar 

  • Naziri E, Mantzouridou F, Tsimidou MZ (2011) Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J Agric Food Chem 59:9980–9989

    Article  CAS  PubMed  Google Scholar 

  • Ohkuma T, Otagiri K, Tanaka S, Ikekawa T (1983) Intensification of host’s immunity by squalene in sarcoma 180 bearing ICR mice. J Pharmacobio-Dyn 6:148–151

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Matsuda T, Kobayashi T, Ohara J, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M (2012) Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for thraustochytrids. Appl Environ Microbiol 78:3193–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skalnik DG, Narita H, Kent C, Simoni RD (1988) The membrane domain of 3-hydroxy-3-methylglutaryl-coenzyme A reductase confers endoplasmic reticulum localization and sterol-regulated degradation onto beta-galactosidase. J Biol Chem 263:6836–6841

    Article  CAS  PubMed  Google Scholar 

  • Tran TLN, Miranda AF, Gupta A, Puri M, Ball AS, Adhikari B, Mouradov A (2020) The nutritional and pharmacological potential of new Australian thraustochytrids isolated from mangrove sediments. Mar Drugs 18:151

    Article  CAS  Google Scholar 

  • Xie Y, Sen B, Wang G (2017) Mining terpenoids production and biosynthetic pathway in thraustochytrids. Bioresour Technol 244:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Cheng R, Lin X, You S, Li K, Rong H, Ma Y (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium Appl Microbiol Biotechnol 97:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Yao L, Gerde JA, Lee SL, Wang T, Harrata KA (2015) Microalgae lipid characterization. J Agric Food Chem 63:1773–1787

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. Makoto M. Watanabe and Dr. Masaki Yoshida, who belonged to the Algal Biomass and Energy System Research and Development Center, the University of Tsukuba, for providing the Aurantiochytrium sp. 18W-13a. Furthermore, we acknowledge Prof. Ken-Ichiro Ishida of the University of Tsukuba for providing valuable suggestions, and, finally, emeritus Prof. Makoto Ito of the Kyushu University for providing the vectors for transformation.

Funding

This work was supported by the JSPS KAKENHI [grant numbers JP17H00800] and the JST OPERA [grant number JPMJOP1832].

Author information

Authors and Affiliations

Authors

Contributions

Tianjing Yang: methodology, investigation, validation, writing — original draft preparation, and writing — review and editing; Darryl Joy Juntila: methodology, investigation, and writing — review and editing; Naomichi Fujihara: methodology and investigation; Takashi Inada: methodology and data curation; Kohei Yoneda: methodology, data curation; Iwane Suzuki: conceptualization, methodology, writing — review and editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Iwane Suzuki.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Juntila, D.J., Fujihara, N. et al. Enhancement of Squalene Production by Constitutive Expression of the 3-Hydroxy-3-Methylglutaryl-CoA Reductase in Aurantiochytrium sp. 18W-13a. Mar Biotechnol 24, 733–743 (2022). https://doi.org/10.1007/s10126-022-10139-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-022-10139-7

Keywords

Navigation