Skip to main content
Log in

MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All the sequencing reads were deposited in the NCBI Short Read Archive database (http://www.ncbi.nlm.nih.gov/sra/) and are retrievable under the accession numbers SAMN19340242, SAMN19340243, SAMN19340244, SAMN19340245, SAMN19340246, SAMN19340247, SAMN19340248, SAMN19340249, SAMN19340250, SAMN19340251, SAMN19340252, and SAMN19340253. The R. philippinarum assembly was deposited with the accession number SUB9727219 under PRJNA732722. The transcriptome sequence data for the R. philippinarum genome were deposited in the NCBI Sequence Read Archive under the accession numbers SUB5380483.

References 

  • Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132:4653–4662

    CAS  PubMed  Google Scholar 

  • Andreassen R, Hoyheim B (2017) miRNAs associated with immune response in teleost fish. Dev Comp Immunol 75:77–85

    CAS  PubMed  Google Scholar 

  • Bao Y, Zhang L, Dong Y, Lin Z (2014) Identification and comparative analysis of the Tegillarca granosa haemocytes microRNA transcriptome in response to Cd using a deep sequencing approach. PLoS One 9:e93619

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B: Methodological 57:289-300

  • Boettiger A, Ermentrout B, Oster G (2009) The neural origins of shell structure and pattern in aquatic mollusks. PNAS 106:6837–6842

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnard M, Cantel S, Boury B, Parrot I (2020) Chemical evidence of rare porphyrins in purple shells of Crassostrea gigas oyster. Sci Rep 10:12150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in drosophila. Cell Press 113:25–36

    CAS  Google Scholar 

  • Budd A, McDougall C, Green K, Degnan BM (2014) Control of shell pigmentation by secretory tubules in the abalone mantle. Front Zool 11

  • Bureau of Fisheries and Fisheries Management of Chinese Ministry of Agriculture (2020). China fishery statistics yearbook 2020. Beijing: China Agriculture Press

  • Cai Y, Yu X, Zhou Q, Yu C, Hu H, Liu J, Lin H, Yang J, Zhang B, Cui P, Hu S, Yu J (2010) Novel microRNAs in silkworm (Bombyx mori). Funct Integr Genomics 10:405–415

    CAS  PubMed  Google Scholar 

  • Chen M, Zhang X, Liu J, Storey KB (2013) High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS One 8:e76120

  • Chen X, Bai Z, Li J (2019a) The mantle exosome and microRNAs of hyriopsis cumingii Involved in nacre color formation. Mar Biotechnol (NY) 21:634–642

    CAS  Google Scholar 

  • Chen X, Zhang M, Zhang J, Bai Z, Li J (2019b) miR-4504 is involved in nacre color formation in Hyriopsis cumingii. Biochem Biophys Res Commun 517:210–215

    CAS  PubMed  Google Scholar 

  • Chin Tai JKA, Freeman JL, (2020) Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep. 7: 559–570

    Google Scholar 

  • Clydesdale FM (1993) Color as a factor in food choice. Crit Rev Food Sci Nutr 33:83–101

    CAS  PubMed  Google Scholar 

  • Crawford N, Kelly D, Hansen M, Beltrame M, Fan S, Bowman SLJE, Ranciaro A, Thompson S, Lo Y, Pfeifer SP, Jensen JD, Campbell MC, Beggs W, Hormozdiari F, Mpoloka SW, Mokone GG, Nyambo T, Meskel DW, Belay G, Haut J, NISC comparative sequencing program, Rothschild H, Zon L, Zhou Y1, Kovacs MA, Xu M, Zhang T, Bishop K, Sinclair J, Rivas C, Elliot E, Choi J, Li SA, Hicks B, Burgess S, Abnet C, Watkins-Chow DE, Oceana E, Song YS, Eskin E, Brown KM, Marks MS, Loftus SK, Pavan WJ, Yeager M, Chanock S, Tishkoff SA (2017) Loci associated with skin pigmentation identified in African populations. Sci eaan8433

  • Ding J, Wen Q, Huo Z, Nie H, Qin Y, Yan X (2021) Identification of shell-color-related microRNAs in the Manila clam Ruditapes philippinarum using high-throughput sequencing of small RNA transcriptomes. Sci Rep 11:8044

  • Ding JF, Wen Q, Huo ZM, Nie HT, Yan XW (2018) A comparison of phenoloxidase activity in the orange, zebra and white groups of Manila clam Ruditapes philippinarum. J Dalian Ocean Uni 33:558–563

    Google Scholar 

  • Dong C, Wang H, Xue L, Dong Y, Yang L, Fan R, Yu X, Tian X, Ma S, Smith GW (2012) Coat color determination by miR-137 mediated down-regulation of microphthalmia-associated transcription factor in a mouse model. RNA 18:1679–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Luo M, Wang L, Yin H, Zhu W, Fu J (2020) MicroRNA-206 regulation of skin pigmentation in Koi Carp (Cyprinus carpio L.). Front Genet 11:47

  • Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5

  • FAO ( Food & Agriculture Organization), (2019). Fishery and Aquaculture Statistics 2017. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Feng D, Li Q, Yu H, Kong L, Du S (2018) Transcriptional profiling of long non-coding RNAs in mantle of Crassostrea gigas and their association with shell pigmentation. Sci Rep 8

  • Feng D, Li Q, Yu H, Liu S, Kong L, Du S (2020) Integrated analysis of microRNA and mRNA expression profiles in Crassostrea gigas to reveal functional miRNA and miRNA-targets regulating shell pigmentation. Sci Rep 10

  • Feng LB, Pang XM, Zhang L, Li JP, Huang LG, Su SY, Zhou X, Li SH, Xiang HY, Chen CY, Liu JL (2015) MicroRNA involvement in mechanism of endogenous protection induced by fastigial nucleus stimulation based on deep sequencing and bioinformatics. BMC Med Genom 8

  • Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52

    PubMed  Google Scholar 

  • Gibas C, Ding J, Zhao L, Chang Y, Zhao W, Du Z, Hao Z (2015) Transcriptome Sequencing and Characterization of Japanese Scallop Patinopecten yessoensis from Different Shell Color Lines. Plos One 10

  • Giles K , Brown R, Ganda C, Podgorny M, Leedman P (2016) Microrna-7-5p inhibits melanoma cell proliferation and metastasis by suppressing rela/nf-κb. Oncotarget 7:31663-31680

  • Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond SM (2015) An overview of microRNAs. Adv Drug Deliv Rev 87:3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Chen X, Bai Z, LIU X, LI J (2017) Detection of shell nacre colour-related SNP and gene mapping of HcTyr gene in Hyriopsis cumingii. J Fisher China 41:1044–1053

  • Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T (2020) De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics

  • Hu Z, Song H, Yang MJ, Yu ZL, Zhou C, Wang XL, Zhang T (2019) Transcriptome analysis of shell color-related genes in the hard clam Mercenaria mercenaria. Comp Biochem Physiol Part D Genomics Proteomics 31:100598

  • Huang S, Ichikawa Y, Yoshitake K, Kinoshita S, Igarashi Y, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S (2019) Identification and characterization of microRNAs and their predicted functions in biomineralization in the pearl oyster (Pinctada fucata). Biology 8

  • Ioannidis J, Sánchez-Molano E, Psifidi A, Donadeu FX, Banos G (2018) Association of plasma microRNA expression with age, genetic background and functional traits in dairy cattle. Sci Rep 8

  • Jiang L (2018) Study on transcriptomes of different shell color strains of Manila clam Ruditapes philippinarum and shell color related genes cloning and expression anaysis

  • Jiao Y, Zheng Z, Du X, Wang Q, Huang R, Deng Y, Shi S, Zhao X (2014) Identification and characterization of microRNAs in pearl oyster Pinctada martensii by Solexa deep sequencing. Mar Biotechnol (NY) 16:54–62

    CAS  Google Scholar 

  • Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cleon I, Cochennec-Laureau N, Gueguen Y, Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization. BMC Genomics 11:613

    PubMed  PubMed Central  Google Scholar 

  • Kang H, Liang QJ, Hu R, Li ZH, Liu Y, Wang WN (2019) Integrative mRNA-miRNA interaction analysis associated with the immune response of Epinephelus coioddes to Vibrio alginolyticus infection. Fish Shellfish Immunol 90:404–412

    CAS  PubMed  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    CAS  PubMed  Google Scholar 

  • Kloosterman WP, Plasterk RH (2006) The diverse functions of microRNAs in animal development and disease. Dev Cell 11:441–450

    CAS  PubMed  Google Scholar 

  • Köhler HR, Capowiez Y, Mazzia C, Eckstein H, Kaczmarek N, Bilton MC, Burmester JK, Capowiez L, Chueca LJ, Favilli L, Florit Gomila J (2021) Experimental simulation of environmental warming selects against pigmented morphs of land snails. Ecol Evo 11:1111–1130

  • Kruger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451-454

    PubMed  PubMed Central  Google Scholar 

  • Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    CAS  PubMed  Google Scholar 

  • Lai EC (2004) Predicting and validating microRNA targets. Genome Biol 5:115

    PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed  PubMed Central  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560

    CAS  PubMed  Google Scholar 

  • Li P, Peng J, Hu J, Xu Z, Xie W, Yuan L (2011) Localized expression pattern of miR-184 in Drosophila. Mol Biol Rep 38:355–358

    CAS  PubMed  Google Scholar 

  • Li S, Xie L, Zhang C, Zhang Y, Gu M, Zhang R (2004) Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp Biochem Physiol B Biochem Mol Biol 138:235–243

    PubMed  Google Scholar 

  • Liu E, Sun X, Li J, Zhang C (2018) miR30a5p inhibits the proliferation, migration and invasion of melanoma cells by targeting SOX4. Mol Med Rep 18:2492–2498

    PubMed  Google Scholar 

  • Liu Z, Chen M, Zhang X, Liu J, Storey KB (2013) High-throughput sequencing reveals differential expression of miRNAs in intestine from sea cucumber during aestivation. PLoS One 8

  • Luo M, Wang L, Zhu W, Fu J, Song F, Fang M, Dong J, Dong Z (2018) Identification and characterization of skin color microRNAs in Koi carp (Cyprinus carpio L.) by Illumina sequencing. BMC Genom 19:779

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    CAS  PubMed  Google Scholar 

  • Nie H, Jiang K, Jiang L, Huo Z, Ding J, Yan X (2020a) Transcriptome analysis reveals the pigmentation related genes in four different shell color strains of the Manila clam Ruditapes philippinarum. Genomics 112:2011–2020

    CAS  PubMed  Google Scholar 

  • Nie H, Jiang K, Li N, Jahan K, Jiang L, Huo Z, Yan X (2020b) Transcriptome analysis reveals the pigmentation-related genes in two shell color strains of the Manila clam Ruditapes philippinarum. Anim Biotechnol 1–12

  • Osawa M, Fisher DE (2008) Notch and melanocytes: diverse outcomes from a single signal. J Invest Dermatol 128:2571–2574

    CAS  PubMed  Google Scholar 

  • Peng J, Liu H, Liu C (2017) MiR-155 promotes uveal melanoma cell proliferation and invasion by regulating NDFIP1 expression. Technol Cancer Res Treat 16:1160–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheil AE, Gärtner U, Köhler H-R (2012) Colour polymorphism and thermal capacities in Theba pisana (O.F. Müller 1774). J Therm Biol 37:462–467

    Google Scholar 

  • Scheil AE, Hilsmann S, Triebskorn R, Kohler HR (2013) Shell colour polymorphism, injuries and immune defense in three helicid snail species, Cepaea hortensis, Theba pisana and Cornu aspersum maximum. Results Immunol 3:73–78

    PubMed  PubMed Central  Google Scholar 

  • Scheil AE, Hilsmann S, Triebskorn R, Kohler HR (2014) Shell colouration and parasite tolerance in two helicoid snail species. J Invertebr Pathol 117:1–8

    PubMed  Google Scholar 

  • Shalom-Feuerstein R, Serror L, De La Forest Divonne S, Petit I, Aberdam E, Camargo L, Damour O, Vigouroux C, Solomon A, Gaggioli C, Itskovitz-Eldor J, Ahmad S; Aberdam D (2012) Pluripotent Stem Cell Model Reveals Essential Roles for miR-450b-5p and miR-184 in Embryonic Corneal Lineage Specification. Stem Cells 30(5):898–909

  • Sun JL, Zhao LL, He K, Liu Q, Luo J, Zhang DM, Liang J, Liao L, Ma JD, Yang S (2020a) MicroRNA regulation in hypoxic environments: differential expression of microRNAs in the liver of largemouth bass (Micropterus salmoides). Fish Physiol Biochem 46:2227–2242

    CAS  PubMed  Google Scholar 

  • Sun JL, Zhao LL, He K, Liu Q, Yang S (2020b) Mirna-mrna integration analysis reveals the regulatory roles of mirnas in the metabolism of largemouth bass (micropterus salmoides) livers during acute hypoxic stress. Aquacult 526:735362

  • Tian Q (2015) identification and functional studies of the microRNAs from the marginal and central zone of Pinctada martensii

  • Vachtenheim J, Borovansky J (2010) Transcription physiology of pigment formation in melanocytes: central role of MITF. Exp Dermatol 19:617–627

    CAS  PubMed  Google Scholar 

  • Wang L, Zhu W, Dong Z, Song F, Dong J, Fu J (2018) Comparative microRNA-seq analysis depicts candidate miRNAs involved in skin color differentiation in red tilapia. Int J Mol Sci 19

  • Wang P, Zhao Y, Fan R, Chen T, Dong C, (2016) MicroRNA-21a-5p Functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes. Int J Mol Sci  17

  • Weitzel RP, Lesniewski ML, Haviernik P, Kadereit S, Leahy P, Greco NJ, Laughlin MJ (2009) microRNA 184 regulates expression of NFAT1 in umbilical cord blood CD4+ T cells. Blood 113:6648–6657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen M, Shen Y, Shi S, Tang T (2012) miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformat 12

  • Wen Q (2019) Excavation and preliminary verification of shell color related microRNAs in Manila clam Ruditapes philippinarum

  • Williams ST (2017) Molluscan shell colour. Biol Rev Camb Philos Soc 92:1039–1058

    PubMed  Google Scholar 

  • Woldemariam NT, Agafonov O, Hoyheim B, Houston RD, Taggart JB, Andreassen R (2019) Expanding the miRNA repertoire in Atlantic salmon; discovery of isomiRs and miRNAs highly expressed in different tissues and developmental stages. Cells 8

  • Wu DT, Chen JS, Chang DC, Lin S-L (2008) Mir-434-5p mediates skin whitening and lightening. Clin Cosmet Investig Dermatol 1:19–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Fu Y, Cao J, Yu M, Tang X, Zhao S (2014) Identification of differentially expressed mirnas between white and black hair follicles by rna-sequencing in the goat (capra hircus). Int J Mol Sci 15:9531-9545

  • Xing D, Li Q, Kong L, Yu H (2018) Heritability estimate for mantle edge pigmentation and correlation with shell pigmentation in the white-shell strain of Pacific oyster, Crassostrea gigas. Aquaculture 482:73–77

    Google Scholar 

  • Yan B, Liu B, Zhu CD, Li KL, Yue LJ, Zhao JL, Gong XL, Wang CH (2013) microRNA regulation of skin pigmentation in fish. J Cell Sci 126:3401–3408

    CAS  PubMed  Google Scholar 

  • Yan X, Zhang G, Yang F, Liang J (2005) A comparison of growth and development of Manila Clam (Ruditapes philippinarum) from two pedigrees. J Dalian Ocean Uni 20

  • Yan X, Zhang Y, Sun H, Huo Z, Sun X, Yang F, Zhang G (2010) Three way crosses between two-band red and white zebra strains of Manila clam, Ruditapes philippinarum. J Fisher China 34:1190–1198

    Google Scholar 

  • Yan X, Nie H, Huo Z, Ding J, Li Z, Yan L, Jiang L, Mu Z, Wang H, Meng X, Chen P, Zhou M, Rbbani M, Liu G, Li D (2019) Clam genome sequence clarifies the molecular basis of its benthic adaptation and extraordinary shell color diversity. iScience 19:1225–1237

  • Yang F, Chen Y, Xue Z, Lv Y, Shen L, Li K, Zheng P, Pan P, Feng T, Jin L, Yao Y (2020a) High-Throughput Sequencing and Exploration of the lncRNA-circRNA-miRNA-mRNA Network in Type 2 Diabetes Mellitus. Biomed Res Int 2020:8162524

    PubMed  PubMed Central  Google Scholar 

  • Yang Z, Hu H, Zou Y, Luo W, Xie L, You Z (2020b) miR-7 reduces high glucose induced-damage via HoxB3 and PI3K/AKT/mTOR signaling pathways in retinal pigment epithelial cells. Curr Mol Med 20:372–378

    CAS  PubMed  Google Scholar 

  • Ying M, Feng H, Zhang X, Liu R, Ning H (2020) MiR-9-5p inhibits the proliferation, migration and invasion of choroidal melanoma by targeting BRAF. Technol Cancer Res Treat 19:1533033820956987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young M, Wakeeld M, Smyth G, Oshlack A (2011) goseq: Gene Ontology testing for RNA-seq datasets

  • Yue X, Nie Q, Xiao G, Liu B (2015) Transcriptome analysis of shell color-related genes in the clam Meretrix meretrix. Mar Biotechnol (NY) 17:364–374

    CAS  Google Scholar 

  • Zhang H, Yan XW, Zhang YH, Gao X, Yao T, Yang F, Zhang GF (2014) Diallel crosses between cow color strain and ocean—orange color strain of Manila Clam Ruditapes philippinarum. Fisher Sci 33

  • Zhang Y, Jiao Y, Tian Q, Du X, Deng Y (2020) Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii. Compara Biochem Physiol Part B: Biochem Mole Biol

  • Zhao G, Guo S, Jiang K, Zhang T, Wu H, Qiu C, Deng G (2019) MiRNA profiling of plasma-derived exosomes from dairy cows during gestation. Theriogenology 130:89-98

  • Zhao X, Yu H, Kong L, Liu S, Li Q (2016) High throughput sequencing of small RNAs transcriptomes in two Crassostrea oysters identifies microRNAs involved in osmotic stress response. Sci Rep 6:22687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Z (2013) Identification and function reseach of nacre formation related microRNAs in pearl oyster. Pinctada Martensii

  • Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, Zhao X, Liang C, Wang Y, Sun L, Shi M, Xu X, Shen F, Chen M, Han Z, Peng Z, Zhai Q, Chen J, Zhang Z, Yang R, Ye J, Guan Z, Yang H, Gui Y, Wang J, Cai Z, Zhang X (2010) Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One 5:e15224

  • Zhou Z, Wang L, Song L, Liu R, Zhang H, Huang M, Chen H (2014) The identification and characteristics of immune-related microRNAs in haemocytes of oyster Crassostrea gigas. PLoS One 9:e88397

  • Zhu Y, Li Q, Yu H, Liu S, Kong L (2021) Shell biosynthesis and pigmentation as revealed by the expression of tyrosinase and tyrosinase-like protein genes in pacific oyster (Crassostrea gigas) with different shell colors. Marine Biotechonology. https://doi.org/10.1007/s10126-021-10063-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Ministry of Science and Technology through the National Key Research and Development Program of China (2018YFD0901400, 2019YFD0900704) and supported by China Agriculture Research System of MOF and MARA. The Project is sponsored by “Liaoning BaiQianWan Talents Program” and Intercollegiate jointtraining program of colleges and universities in Liaoning Province. The work was supported by the Outstanding Chinese and Foreign Youth Exchange Program of China Association for Science and Technology (CAST), 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongtao Nie or Xiwu Yan.

Ethics declarations

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Nie, H., Yin, Z. et al. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). Mar Biotechnol 23, 976–993 (2021). https://doi.org/10.1007/s10126-021-10080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10080-1

Keywords

Navigation