Skip to main content
Log in

Genome-Wide Association Analysis Reveals the Genetic Architecture of Parasite (Cryptocaryon irritans) Resistance in Large Yellow Croaker (Larimichthys crocea)

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Large yellow croaker is an important marine culture species in China. Recently, the large yellow croaker industry is threatened by various disease problems, especially for the white spot disease, which is caused by parasite Cryptocaryon irritans. In the current study, we conducted a genome-wide association study (GWAS) for C. irritans resistance in two large yellow croaker populations (n = 264 and n = 480, respectively). We identified 15 QTL with explained genetic variance ranging from 1 to 8% in the two populations. One QTL on chromosome 23 was shared by the two populations, and three QTL had been reported in the previous study. We identified a lot of biological pathways associated with C. irritans resistance, such as hormone transport, response to bacterium, apoptotic process, acute inflammatory response to antigenic stimulus, and NF-kappa B signaling pathway. The genes casp8 and traf6 involved in regulatory network for apoptosis and inflammation were identified to be candidate genes for C. irritans resistance. Our results showed the complex polygenic architecture of resistance of large yellow croaker against C. irritans. These results would be helpful for the researches of the molecular mechanism of C. irritans resistance and genome-assisted breeding of large yellow croaker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

We agree to archive the sequence data associated with this manuscript on the NCBI should the manuscript be accepted.

Code Availability

The code used during the current study to analyze the datasets is available from the corresponding author on reasonable request.

References

  • Aslam ML, Boison SA, Lillehammer M, Norris A, Gjerde B (2020) Genome-wide association mapping and accuracy of predictions for amoebic gill disease in Atlantic salmon (Salmo salar). Sci Rep 10:6435–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F, Swofford DL, Cummings MP, Rambaut A, Suchard MA (2012) BEAGLE: an application programming interface and high-performance computing library for statistical phylogenetics. Syst Biol 61:170–173

    Article  PubMed  Google Scholar 

  • Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P (2020) Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. Fish Shellfish Immunol 99:462–472

    Article  CAS  PubMed  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2004) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  PubMed  CAS  Google Scholar 

  • Barria A, Christensen KA, Yoshida GM, Correa K, Jedlicki A, Lhorente JP, Davidson WS, Yanez JM (2018) Genomic predictions and genome-wide association study of resistance against Piscirickettsia salmonis in coho salmon (Oncorhynchus kisutch) using ddRAD sequencing. G3-Genes Genomes Genet 8:1183–1194

    CAS  Google Scholar 

  • Barton NH, Etheridge AM, Veber A (2017) The infinitesimal model: definition, derivation, and implications. Theor Popul Biol 118:50–73

    Article  CAS  PubMed  Google Scholar 

  • Boison SA, Gjerde B, Hillestad B, Makvandi-Nejad S, Moghadam HK (2019) Genomic and transcriptomic analysis of amoebic gill disease resistance in Atlantic salmon (Salmo salar L.). Front Genet 10

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell NR, Lapatra SE, Overturf K, Towner R, Narum SR (2014) Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. G3-Genes Genomes Genet 4:2473–2481

    Google Scholar 

  • Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen B, Zhou Z, Ke Q, Wu Y, Bai H, Pu F, Xu P (2019) The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies. Scie Data 6

  • Chen KM, Lee HH, Lai SC, Hsu LS, Wang CJ, Liu JY (2008) Apoptosis in meningoencephalitis of Angiostrongylus cantonensis-infected mice. Exp Parasitol 119:385–390

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Zhao Y, Xu J, Bao J, Zhao J, Chen J, Chen G, Han J (2020) The nephroprotective effect of TNF receptor-associated factor 6 (TRAF6) blockade on LPS-induced acute renal injury through the inhibition if inflammation and oxidative stress. Med Sci Monit 26

  • Colorni A, Burgess P (1997) Cryptocaryon irritans Brown 1951, the cause of ‘white spot disease’ in marine fish: an update. Aquac Sci Conserv 1:217–238

    Article  Google Scholar 

  • Correa K, Lhorente JP, Bassini L, Lopez ME, Di Genova A, Maass A, Davidson WS, Yanez JM (2017) Genome wide association study for resistance to Caligus rogercresseyi in Atlantic salmon (Salmo salar L.) using a 50K SNP genotyping array. Aquaculture 472:61–65

    Article  CAS  Google Scholar 

  • Fan B, Onteru SK, Du ZQ, Garrick DJ, Stalder KJ, Rothschild MF (2011) Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. Plos One 6

  • Fernando R, Toosi A, Wolc A, Garrick D, Dekkers J (2017) Application of whole-genome prediction methods for genome-wide association studies: a Bayesian approach. J Agric Biol Environ Stat 22:172–193

    Article  Google Scholar 

  • Fraslin C, Brard-Fudulea S, D’ambrosio, J, Bestin A, Charles M, Haffray P, Quillet E, Phocas F, (2019) Rainbow trout resistance to bacterial cold water disease: two new quantitative trait loci identified after a natural disease outbreak on a French farm. Anim Genet 50:293–297

    Article  CAS  PubMed  Google Scholar 

  • Gonen S, Baranski M, Thorland I, Norris A, Grove H, Arnesen P, Bakke H, Lien S, Bishop SC, Houston RD (2015) Mapping and validation of a major QTL affecting resistance to pancreas disease (salmonid alphavirus) in Atlantic salmon (Salmo salar). Heredity 115:405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashemi M, Aftabi S, Moazeni-Roodi A, Sarani H, Wiechec E, Ghavami S (2020) Association of CASP8 polymorphisms and cancer susceptibility: a meta-analysis. Eur J Pharmacol 173201

  • Hervé Perdry CDR (2018) gaston: genetic data handling (QC, GRM, LD, PCA) & linear mixed models. R package version 1.5.4. https://CRAN.R-project.org/package=gaston

  • Holborn MK, Ang KP, Elliott JAK, Powell F, Boulding EG (2018) Genome wide association analysis for bacterial kidney disease resistance in a commercial North American Atlantic salmon (Salmo salar) population using a 50 K SNP panel. Aquaculture 495:465–471

    Article  Google Scholar 

  • Hu MS, Schwartzman JD, Yeaman GR, Collins J, Seguin R, Khan IA, Kasper LH (1999) Fas-FasL interaction involved in pathogenesis of ocular toxoplasmosis in mice. Infect Immun 67:928–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizilkaya K, Tait RG, Garrick DJ, Fernando RL, Reecy JM (2013) Genome-wide association study of infectious bovine keratoconjunctivitis in Angus cattle. BMC Genetics 14

  • Kong S, Ke Q, Chen L, Zhou Z, Pu F, Zhao J, Bai H, Peng W, Xu P (2019) Constructing a high-density genetic linkage map for large yellow croaker (Larimichthys crocea) and mapping resistance trait against ciliate parasite Cryptocaryon irritans. Mar Biotechnol 21:262–275

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loh PR, Bhatia G, Gusev A, Finucane HK, Bulik-Sullivan BK, Pollack SJ, De Candia TR, Lee SH, Wray NR, Kendler KS, O’donovan MC, Neale BM, Patterson N, Price AL, Psychiat Genomics C (2015) Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat Genet 47:1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv C, Zhang D, Wang Z (2016) A novel C-type lectin, Nattectin-like protein, with a wide range of bacterial agglutination activity in large yellow croaker Larimichthys crocea. Fish Shellfish Immunol 50:231–241

    Article  CAS  PubMed  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Mccarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, Mccarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuel Yanez J, Bangera R, Paul Lhorente J, Oyarzun M, Neira R (2013) Quantitative genetic variation of resistance against Piscirickettsia salmonis in Atlantic salmon (Salmo salar). Aquaculture 414:155–159

    Article  Google Scholar 

  • Mccole DF, Eckmann L, Laurent F, Kagnoff MF (2000) Intestinal epithelial cell apoptosis following Cryptosporidium parvum infection. Infect Immun 68:1710–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palti Y, Gao G, Miller MR, Vallejo RL, Wheeler PA, Quillet E, Yao J, Thorgaard GH, Salem M, Rexroad CE, Iii, (2014) A resource of single-nucleotide polymorphisms for rainbow trout generated by restriction-site associated DNA sequencing of doubled haploids. Mol Ecol Resour 14:588–596

    Article  CAS  PubMed  Google Scholar 

  • Palti Y, Vallejo RL, Gao G, Liu S, Hernandez AG, Rexroad CE, III, Wiens GD (2015) Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing. Plos One 10

  • Perez P, De Los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483-U63

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters SO, Kizilkaya K, Garrick DJ, Fernando RL, Reecy JM, Weaber RL, Silver GA, Thomas MG (2013) Heritability and Bayesian genome-wide association study of first service conception and pregnancy in Brangus heifers. J Anim Sci 91:605–612

    Article  CAS  PubMed  Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. Plos One 7

  • Pickrell JK (2014) Joint analysis of functional genomic data and genome-wide association studies of 18 human traits (vol 94, pg 559, 2014). Am J Hum Genet 95:126–126

    Article  CAS  PubMed Central  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, De Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Mao Y, Wang J, Chen R, Zheng L, Su YQ, Chen J, Zheng WQ (2016) Analysis of liver and gill miRNAs of Larimichthys crocea against Cryptocryon irritans challenge. Fish Shellfish Immunol 59:484–491

    Article  CAS  PubMed  Google Scholar 

  • Robledo D, Gutierrez AP, Barria A, Lhorente JP, Houston RD, Yanez JM (2019) Discovery and functional annotation of quantitative trait loci affecting resistance to sea lice in Atlantic salmon. Front Genet 10

  • Robledo D, Matika O, Hamilton A, Houston RD (2018) Genome-wide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon. G3-Genes Genomes Genet 8:1195–1203

    CAS  Google Scholar 

  • Sambrook J, Russell D (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH protocols 2006

  • Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via denovo protein-synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Zhou T, Wang W, Jin Y, Wang X, Geng X, Luo J, Yuan Z, Yang Y, Shi H, Gao D, Dunham R, Liu Z (2018) GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 293:1107–1120

    Article  CAS  PubMed  Google Scholar 

  • Vallejo RL, Liu SX, Gao GT, Fragomeni BO, Hernandez AG, Leeds TD, Parsons JE, Martin KE, Evenhuis JP, Welch TJ, Wiens GD, Palti Y (2017) Similar genetic architecture with shared and unique quantitative trait loci for bacterial cold water disease resistance in two rainbow trout breeding populations. Front Genet 8

  • Vallejo RL, Palti Y, Liu SX, Marancik DP, Wiens GD (2014) Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19. Aquaculture 432:139–143

    Article  CAS  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, Mccarthy MI, Brown MA, Yang J (2017) 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MC, Lee J, Choi Y (2015) Tumor necrosis factor receptor-associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev 266:72–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang J, Su YQ, Mao Y, Zhang JS, Wu CW, Ke QZ, Han KH, Zheng WQ, Xu ND (2016) Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol 48:1–11

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Tan S, Luo J, Shi H, Zhou T, Yang Y, Lin Y, Wang X, Niu D, Yuan Z, Gao D, Dunham R, Liu Z (2019) GWAS analysis indicated importance of NF-B signaling pathway in host resistance against motile Aeromonas septicemia disease in catfish. Mar Biotechnol 21:335–347

    Article  CAS  Google Scholar 

  • Wang Y, Wen H, Fu J, Cai L, Li P-L, Zhao C-L, Dong Z-F, Ma J-P, Wang X, Tian H, Zhang Y, Liu Y, Cai J, She Z-G, Huang Z, Li W, Li H (2020) Hepatocyte TNF receptor-associated factor 6 aggravates hepatic inflammation and fibrosis by promoting lysine 6-linked polyubiquitination of apoptosis signal-regulating kinase 1. Hepatology 71:93–111

    Article  CAS  PubMed  Google Scholar 

  • Wiens GD, Vallejo RL, Leeds TD, Palti Y, Hadidi S, Liu S, Evenhuis JP, Welch TJ, Rexroad  III CE (2013) Assessment of genetic correlation between bacterial cold water disease resistance and spleen index in a domesticated population of rainbow trout: identification of QTL on chromosome Omy19. Plos One 8

  • Xu SZ, Atchley WR (1996) Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics 143:1417–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin F, Gong H, Ke Q, Li A (2015) Stress, antioxidant defence and mucosal immune responses of the large yellow croaker Pseudosciaena crocea challenged with Cryptocaryon irritans. Fish Shellfish Immunol 47:344–351

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Bai H, Ke Q, Li B, Zhou Z, Wang H, Chen B, Pu F, Zhou T, Xu P (2020) Genomic selection for parasitic ciliate Cryptocaryon irritans resistance in large yellow croaker. Aquaculture 531

  • Zhou T, Liu S, Geng X, Jin Y, Jiang C, Bao L, Yao J, Zhang Y, Zhang J, Sun L, Wang X, Li N, Tan S, Liu Z (2017) GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance. Mol Genet Genom 292:231–242

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Biao Jiang (Sun Yat-sen University) for his assistance on the C. irritans challenge experiment.

Funding

We acknowledge financial support from Science and Technology Major Project of Fujian Province (2020NZ08003), Industry-University Collaboration Project of Fujian Province (2019N5001), Open Research Fund Project of State Key Laboratory of Large Yellow Croaker Breeding ( LYC2019RS02 and LYC2019RS03), Independent Research Project for State Key Laboratory of Large Yellow Croaker Breeding (LYC2017ZY01), the Fundamental Research Funds for the Central Universities (No. 20720200110), the Project of Industry-College-Institute Cooperation between Ningde City and Xiamen University (No. 2019C002), the Special Project of Local Science and Technology Development Guided by the Central Government (2019L3032), the National Key Research and Development Program of China (2018YFC1406306,) and the Foreign Cooperation Project of Fujian Province (No. 2019I1008).

Author information

Authors and Affiliations

Authors

Contributions

PX conceived the project. JZ, HB, MB, and QK conducted the C. irritans challenge experiments and collected the sample. JZ, ZZ, and FP contributed the construction of ddRAD libraries. JZ prepared the data, conducted the data analysis, designed the charts and tables and wrote the manuscript. PX, TZ, MB, WZ, and BL revised the manuscript. All authors read and validated the manuscript.

Corresponding author

Correspondence to Peng Xu.

Ethics declarations

Ethics Approval

The study was approved by the Laboratory Animal Management and Ethics Committee, College of Ocean and Earth Sciences, Xiamen University. All experimental procedures involving large yellow croaker were performed according to the Regulations for the Administration of Affairs Concerning Experimental Animals (College of Ocean and Earth Sciences, Xiamen University).

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zhou, T., Bai, H. et al. Genome-Wide Association Analysis Reveals the Genetic Architecture of Parasite (Cryptocaryon irritans) Resistance in Large Yellow Croaker (Larimichthys crocea). Mar Biotechnol 23, 242–254 (2021). https://doi.org/10.1007/s10126-021-10019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-021-10019-6

Keywords

Navigation