Skip to main content
Log in

Potential Anticoagulant Activity of Trypsin Inhibitor Purified from an Isolated Marine Bacterium Oceanimonas Sp. BPMS22 and its Kinetics

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Protease inhibitors control major biological protease activities to maintain physiological homeostasis. Marine bacteria isolated from oligotrophic conditions could be taxonomically distinct, metabolically unique, and offers a wide variety of biochemicals. In the present investigation, marine sediments were screened for the potential bacteria that can produce trypsin inhibitors. A moderate halotolerant novel marine bacterial strain of Oceanimonas sp. BPMS22 was isolated, identified, and characterized. The effect of various process parameters like salt concentration, temperature, and pH was studied on the growth of the bacteria and production of trypsin inhibitor. Further, the trypsin inhibitor was purified to near homogeneity using anion exchange, size exclusion, and affinity chromatography. The purified trypsin inhibitor was found to competitively inhibit trypsin activity with an inhibition coefficient, Ki, of 3.44 ± 0.13 μM and second-order association rate constant, kass, of 1.08 × 103 M−1 S−1. The proteinaceous trypsin inhibitor had a molecular weight of approximately 30 kDa. The purified trypsin inhibitor showed anticoagulant activity on the human blood samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akkermans S, Fernandez EN, Logist F, Van Impe JF (2017) Introducing a novel interaction model structure for the combined effect of temperature and pH on the microbial growth rate. Int J Food Microbiol 240:85–96

    Article  Google Scholar 

  • Bijina B, Chellappan S, Basheer SM, Elyas K, Bahkali AH, Chandrasekaran M (2011) Protease inhibitor from Moringa oleifera leaves: isolation, purification, and characterization. Process Biochem 46:2291–2300

    Article  CAS  Google Scholar 

  • Celhar T, Napotnik TB, Obreza A, Zega A, Anderluh PS, Kikelj D, Mlinaric-Rascan I (2009) Azaphenylalanine-based serine protease inhibitors induce caspase-mediated apoptosis. Eur J Pharmacol 602:15–22

    Article  CAS  Google Scholar 

  • Christensen S, Sottrup-Jensen L (1994) Characterization of two serpins from bovine plasma and milk. Biochem J 303:383–390

    Article  CAS  Google Scholar 

  • Edy J, Collen D (1977) The interaction in human plasma of antiplasmin, the fast-reacting plasmin inhibitor, with plasmin, thrombin, trypsin and chymotrypsin. Biochim Biophys Acta 484:423–432

    Article  CAS  Google Scholar 

  • Farmer J III, Asbury M, Hickman F, Brenner DJ, Group ES (1980) Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int J Syst Evol Microbiol 30:569–584

    Google Scholar 

  • Felicioli R, Garzelli B, Vaccari L, Melfi D, Balestreri E (1997) Activity staining of protein inhibitors of proteases on gelatin-containing polyacrylamide gel electrophoresis. Anal Biochem 244:176–179

    Article  CAS  Google Scholar 

  • Fritz H, Tschesche H, Fink E (1976) Proteinase inhibitors from boar seminal plasma. Methods Enzymol 45:834–847

    Article  CAS  Google Scholar 

  • Gaboriaud C, Gupta RK, Martin L, Lacroix M, Serre L, Teillet F, Arlaud GJ, Rossi V, Thielens NM (2013) The serine protease domain of MASP-3: enzymatic properties and crystal structure in complex with ecotin. PLoS One 8:e67962

    Article  CAS  Google Scholar 

  • Giordano D, Coppola D, Russo R, Denaro R, Giuliano L, Lauro FM, di Prisco G, Verde C (2015) Marine microbial secondary metabolites: pathways, evolution and physiological roles. Adv Microb Physiol 66:357–428

    Article  Google Scholar 

  • Harish B, Uppuluri KB, Anbazhagan V (2015) Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr Polym 132:104–110

    Article  CAS  Google Scholar 

  • Harish BS, Uppuluri KB (2018) Microbial serine protease inhibitors and their therapeutic applications. Int J Biol Macromol 107:1373–1387

    Article  CAS  Google Scholar 

  • Imada C (2004) Enzyme inhibitors of marine microbial origin with pharmaceutical importance. Mar Biotechnol 6:193–198

    Article  CAS  Google Scholar 

  • Imada C, Maeda M, Hara S, Taga N, Simidu U (1986) Purification and characterization of subtilisin inhibitors ‘Marinostatin’ produced by marine Alteromonas sp. J Appl Bacteriol 60:469–476

    Article  CAS  Google Scholar 

  • Inouye K, Tonomura B, Hiromi K, Kotaka T, Inagaki H, Sato S, Murao S (1978) The determination of molecular weights of Streptomyces subtilisin inhibitor and the complex of Streptomyces subtilisin inhibitor and subtilisin BPN'by sedimentation equilibrium. J Biochem 84:843–853

    Article  CAS  Google Scholar 

  • Ishihara T, Koga Y, Mori K, Sugasawa K, Iwatsuki Y, Hirayama F (2014) Novel strategy to boost oral anticoagulant activity of blood coagulation enzyme inhibitors based on biotransformation into hydrophilic conjugates. Bioorg Med Chem 22:6324–6332

    Article  CAS  Google Scholar 

  • Kantyka T, Rawlings ND, Potempa J (2010) Prokaryote-derived protein inhibitors of peptidases: a sketchy occurrence and mostly unknown function. Biochimie 92:1644–1656

    Article  CAS  Google Scholar 

  • Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Rao KB (2014) Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 9:e90972

    Article  CAS  Google Scholar 

  • Kennedy AR, Little JB (1981) Effects of protease inhibitors on radiation transformation in vitro. Cancer Res 41:2103–2108

    CAS  PubMed  Google Scholar 

  • Kim I-S, Kim H-T, Lee H-S, Lee K-J (1991) Protease inhibitor production using Streptomyces sp. SMF13. J Microbiol Biotechnol 1:288–292

    CAS  Google Scholar 

  • Kobayashi T, Imada C, Hiraishi A, Tsujibo H, Miyamoto K, Inamori Y, Hamada N, Watanabe E (2003) Pseudoalteromonas sagamiensis sp. nov., a marine bacterium that produces protease inhibitors. Int J Syst Evol Microbiol 53:1807–1811

    Article  CAS  Google Scholar 

  • Krishnan VM, Murugan K (2015) Purification, characterization and kinetics of protease inhibitor from fruits of Solanum aculeatissimum Jacq. Food Sci Human Wellness 4:97–107

    Article  Google Scholar 

  • Kunitz M (1947) Crystalline soybean trypsin inhibitor. J Gen Physiol 30:291–310

    Article  CAS  Google Scholar 

  • Laskowski M, Qasim M (2000) What can the structures of enzyme-inhibitor complexes tell us about the structures of enzyme substrate complexes? Biochim Biophys Acta 1477:324–337

    Article  CAS  Google Scholar 

  • Lawandi J, Gerber-Lemaire S, Juillerat-Jeanneret L, Moitessier N (2010) Inhibitors of prolyl oligopeptidases for the therapy of human diseases: defining diseases and inhibitors. J Med Chem 53:3423–3438

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  Google Scholar 

  • Martinelli P, Rugarli EI (2010) Emerging roles of mitochondrial proteases in neurodegeneration. Biochim Biophys Acta 1797:1–10

    Article  CAS  Google Scholar 

  • Mayer AM, Hamann MT (2004) Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar Biotechnol 6:37–52

    Article  CAS  Google Scholar 

  • Miyamoto K, Tsujibo H, Hikita Y, Tanaka K, Miyamoto S, Hishimoto M, Imada C, Kamei K, Saburo H, Inamori Y (1998) Cloning and nucleotide sequence of the gene encoding a serine proteinase inhibitor named marinostatin from a marine bacterium, Alteromonas sp. strain B-10-31. Biosci Biotechnol Biochem 62:2446–2449

    Article  CAS  Google Scholar 

  • Neysens P, Messens W, De Vuyst L (2003) Effect of sodium chloride on growth and bacteriocin production by Lactobacillus amylovorus DCE 471. Int J Food Microbiol 88:29–39

    Article  CAS  Google Scholar 

  • O'Leary MA, Isbister GK (2010) A turbidimetric assay for the measurement of clotting times of procoagulant venoms in plasma. J Pharmacol Toxicol Methods 61:27–31

    Article  CAS  Google Scholar 

  • Palomo S, González I, de la Cruz M, Martín J, Tormo JR, Anderson M, Hill RT, Vicente F, Reyes F, Genilloud O (2013) Sponge-derived Kocuria and Micrococcus spp. as sources of the new thiazolyl peptide antibiotic kocurin. Mar Drugs 11:1071–1086

    Article  CAS  Google Scholar 

  • Pandey S, Sree A, Dash SS, Sethi DP, Chowdhury L (2013) Diversity of marine bacteria producing beta-glucosidase inhibitors. Microb Cell Factories 12:35

    Article  CAS  Google Scholar 

  • Prezelj A, Stefanic Anderluh P, Peternel L, Urleb U (2007) Recent advances in serine protease inhibitors as anticoagulant agents. Curr Pharm Des 13:287–312

    Article  CAS  Google Scholar 

  • Ramezani M, Amoozegar MA, Ventosa A (2015) Screening and comparative assay of poly-hydroxyalkanoates produced by bacteria isolated from the Gavkhooni Wetland in Iran and evaluation of poly-β-hydroxybutyrate production by halotolerant bacterium Oceanimonas sp. GK1. Ann Microbiol 65:517–526

    Article  CAS  Google Scholar 

  • Rawlings ND, Tolle DP, Barrett AJ (2004) Evolutionary families of peptidase inhibitors. Biochem J 378:705–716

    Article  CAS  Google Scholar 

  • Romanenko L, Schumann P, Zhukova N, Rohde M, Mikhailov V, Stackebrandt E (2003) Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53:1885–1888

    Article  CAS  Google Scholar 

  • Sabotič J, Bleuler-Martinez S, Renko M, Caglič PA, Kallert S, Štrukelj B, Turk D, Aebi M, Kos J, Künzler M (2012) Structural basis of trypsin inhibition and entomotoxicity of cospin, serine protease inhibitor involved in defense of Coprinopsis cinerea fruiting bodies. J Biol Chem 287:3898–3907

    Article  Google Scholar 

  • Sabotič J, Kos J (2012) Microbial and fungal protease inhibitors—current and potential applications. Appl Microbiol Biotechnol 93:1351–1375

    Article  Google Scholar 

  • Sapna K, Ali PM, Mol KR, Bhat SG, Chandrasekaran M, Elyas K (2017) Isolation, purification and characterization of a pH tolerant and temperature stable proteinaceous protease inhibitor from marine Pseudomonas mendocina. Biotechnol Lett 39:1911–1916

    Article  CAS  Google Scholar 

  • Scarafoni A, Consonni A, Galbusera V, Negri A, Tedeschi G, Rasmussen P, Magni C, Duranti M (2008) Identification and characterization of a Bowman–Birk inhibitor active towards trypsin but not chymotrypsin in Lupinus albus seeds. Phytochemistry 69:1820–1825

    Article  CAS  Google Scholar 

  • Shin DH, Song HK, Suh SW, Seong IS, Lee CS, Chung CH (1996) Crystal structure analyses of uncomplexed ecotin in two crystal forms: implications for its function and stability. Protein Sci 5:2236–2247

    Article  CAS  Google Scholar 

  • Siddikee MA, Chauhan P, Anandham R, Han G-H, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  Google Scholar 

  • Tanaka S, Koga Y, Takano K, Kanaya S (2011) Inhibition of chymotrypsin-and subtilisin-like serine proteases with Tk-serpin from hyperthermophilic archaeon Thermococcus kodakaraensis. Biochim Biophys Acta 1814:299–307

    Article  CAS  Google Scholar 

  • Ulmer JS, Lindquist RN, Dennis MS, Lazarus RA (1995) Ecotin is a potent inhibitor of the contact system proteases factor XIIa and plasma kallikrein. FEBS Lett 365:159–163

    Article  CAS  Google Scholar 

  • Wahyudi AT, Qatrunnada, Mubarik NR (2010) Screening and characterization of protease inhibitors from marine bacteria associated with sponge Jaspis sp. Hayati J Biosci 17:173–178

    Article  Google Scholar 

  • Yang SQ, Wang C-I, Gillmor SA, Fletterick RJ, Craik CS (1998) Ecotin: a serine protease inhibitor with two distinct and interacting binding sites. J Mol Biol 279:945–957

    Article  CAS  Google Scholar 

  • Yu L, Liu Y, Wang G (2009) Identification of novel denitrifying bacteria Stenotrophomonas sp. ZZ15 and Oceanimonas sp. YC13 and application for removal of nitrate from industrial wastewater. Biodegradation 20:391–400

    Article  CAS  Google Scholar 

  • Zhang H, Fei R, Xue B, Yu S, Zhang Z, Zhong S, Gao Y, Zhou X (2017) Pnserpin: a novel serine protease inhibitor from extremophile Pyrobaculum neutrophilum. Int J Mol Sci 18:113

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Department of Science and Technology, New Delhi, India (SB/FTP/ETA-212/2012) is acknowledged with gratitude. We also thank Dr. U. Venkatasubramanian for providing the FPLC facilities (R&M/0023/SCBT-008/2012-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Babu Uppuluri.

Electronic Supplementary Material

ESM 1

(DOCX 498 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harish, B.S., Uppuluri, K.B. Potential Anticoagulant Activity of Trypsin Inhibitor Purified from an Isolated Marine Bacterium Oceanimonas Sp. BPMS22 and its Kinetics. Mar Biotechnol 20, 780–791 (2018). https://doi.org/10.1007/s10126-018-9848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9848-y

Keywords

Navigation