Skip to main content
Log in

A new spike-in-based method for quantitative metabarcoding of soil fungi and bacteria

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Metabarcoding is a powerful tool to characterize biodiversity in biological samples. The interpretation of taxonomic profiles from metabarcoding data has been hindered by their compositional nature. Several strategies have been proposed to transform compositional data into quantitative data, but they have intrinsic limitations. Here, I propose a workflow based on bacterial and fungal cellular internal standards (spike-ins) for absolute quantification of the microbiota in soil samples. These standards were added to the samples before DNA extraction in amounts estimated after qPCRs, to target around 1–2% coverage in the sequencing run. In bacteria, proportions of spike-in reads in the sequencing run were very similar (< 2-fold change) to those predicted by the qPCR assessment, and for fungi they differed up to 40-fold. The low variation among replicates highlights the reproducibility of the method. Estimates based on multiple bacterial spike-ins were highly correlated (r = 0.99). Procrustes analysis evidenced significant biological effects on the community composition when normalizing compositional data. A protocol based on qPCR estimation of input amounts of cellular spikes is proposed as a cheap and reliable strategy for quantitative metabarcoding of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw FASTQ files and assembled sequences have been deposited in the NCBI under the BioProject PRJNA883611, with the accessions KHUY00000000 for fungal ITS2 data and KHUZ00000000 for bacterial 16S rRNA. Code and phyloseq objects with data were deposited in https://github.com/csmiguel/spike-in (Zenodo: 10.5281/zenodo.8302971).

References

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F et al (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal its sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919

    Article  Google Scholar 

  • Bonk F, Popp D, Harms H, Centler F (2018) PCR-based quantification of taxa-specific abundances in microbial communities: quantifying and avoiding common pitfalls. J Microbiol Methods 153:139–147

    Article  CAS  PubMed  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen K, Hu Z, Xia Z, Zhao D, Li W, Tyler JK (2016) The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol Cell Biol 36:662–667

    Article  CAS  PubMed Central  Google Scholar 

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Dopheide A, Xie D, Buckley TR, Drummond AJ, Newcomb RD (2019) Impacts of DNA extraction and PCR on DNA metabarcoding estimates of soil biodiversity. Methods Ecol Evol 10:120–133

    Article  Google Scholar 

  • Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8:2224

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardwick SA, Chen WY, Wong T, Kanakamedala BS, Deveson IW, Ongley SE, Santini NS, Marcellin E, Smith MA, Nielsen LK, Lovelock CE, Neilan BA, Mercer TR (2018) Synthetic microbe communities provide internal reference standards for metagenome sequencing and analysis. Nat Commun 9:1–10

    Article  CAS  Google Scholar 

  • Haro C, Anguita-Maeso M, Metsis M, Navas-Cortés JA, Landa BB (2021) evaluation of established methods for DNA extraction and primer pairs targeting 16S rRNA gene for bacterial microbiota profiling of olive xylem sap. Front Plant Sci 12:640829

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison JG, John Calder W, Shuman B, Alex Buerkle C (2021) The quest for absolute abundance: the use of internal standards for DNA-based community ecology. Mol Ecol Resour 21:30–43

    Article  PubMed  Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MB, Highlander SK, Anderson EL, Li W, Dayrit M, Klitgord N, Fabani MM, Seguritan V, Green J, Pride DT, Yooseph S, Biggs W, Nelson KE, Craig Venter J (2015) Library preparation methodology can influence genomic and functional predictions in human microbiome research. Proc Natl Acad Sci U S A 112:14024–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kõljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson KH, May TW, Taylor AFS, Jeppesen TS, Frøslev TG, Lindahl BD, Põldmaa K, Saar I, Suija A, Savchenko A, Yatsiuk I, Adojaan K, Ivanov F, Piirmann T, Pöhönen R et al (2020) The taxon hypothesis paradigm - On the unambiguous detection and communication of taxa. Microorganisms 8:1–24

    Article  CAS  Google Scholar 

  • Kong J, Liu X, Wang L, Huang H, Ou D, Guo J, Laws EA, Huang B (2021) Patterns of relative and quantitative abundances of marine bacteria in surface waters of the subtropical Northwest Pacific Ocean estimated with high-throughput quantification sequencing. Front Microbiol. https://doi.org/10.3389/fmicb.2020.599614

  • Lin Y, Gifford S, Ducklow H, Schofield O, Cassar N (2019) towards quantitative microbiome community profiling using internal standards. Appl Environ Microbiol 85:1–14

    Article  Google Scholar 

  • Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103:731–740

    Article  PubMed  Google Scholar 

  • Liu P, Yang S, Yang S (2022) KTU: K-mer taxonomic units improve the biological relevance of amplicon sequence variant microbiota data. Methods Ecol Evol 13:560–568

    Article  CAS  Google Scholar 

  • Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG (2019) Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol 28:721–730

    Article  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12

    Article  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. https://doi.org/10.1371/journal.pone.0061217

  • McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1003531

  • Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, Zengler K, Knight R (2019) Establishing microbial composition measurement standards with reference frames. Nat Commun. https://doi.org/10.1038/s41467-019-10656-5

  • Murali A, Bhargava A, Wright ES (2018) IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are non-orthologous. Mol Phylogenet Evol 7:103–116

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, others (2020) Vegan: community ecology package. R package version 2.5-6. 2019

  • Paloi S, Luangsa-ard JJ, Mhuantong W, Stadler M, Kobmoo N (2022) Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. Fungal Biol Rev 42:1–33

    Article  CAS  Google Scholar 

  • Peres-Neto PR, Jackson DA (2001) How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the Mantel test. Oecologia 129:169–178

    Article  PubMed  Google Scholar 

  • Props R, Kerckhof FM, Rubbens P, De VJ, Sanabria EH, Waegeman W, Monsieurs P, Hammes F, Boon N (2017) Absolute quantification of microbial taxon abundances. ISME J 11:584–587

    Article  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TP, Erb I, Gloor G, Notredame C, Richardson MF, Crowley TM (2019) A field guide for the compositional analysis of any-omics data. GigaScience 8:1–14

    Article  CAS  Google Scholar 

  • R Core Team (2022) R: a language and environment for statistical computing

    Google Scholar 

  • Rodriguez-Mena S, Camacho M, de los Santos B, Miranda L, Camacho-Sanchez M (2022) Microbiota modulation in blueberry rhizosphere by biocontrol bacteria. Microbiol Res (Pavia) 13:809–824

    Article  CAS  Google Scholar 

  • Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv 17:e00547

    Article  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  PubMed  PubMed Central  Google Scholar 

  • Shelton AO, Gold ZJ, Jensen AJ, D′Agnese E, Andruszkiewicz Allan E, Van Cise A, Gallego R, Ramón-Laca A, Garber-Yonts M, Parsons K, Kelly RP (2022) Toward quantitative metabarcoding. Ecology.: https://doi.org/10.1002/ecy.3906

  • Sidstedt M, Rådström P, Hedman J (2020) PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem 412:2009–2023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smets W, Leff JW, Bradford MA, McCulley RL, Lebeer S, Fierer N (2016) A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem 96:145–151

    Article  CAS  Google Scholar 

  • Stämmler F, Gläsner J, Hiergeist A, Holler E, Weber D, Oefner PJ, Gessner A, Spang R (2016) Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4:1–13

    Article  Google Scholar 

  • Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM (2015) rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res 43:D593–D598

    Article  CAS  PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 21:2045–2050

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Bahram M, Zinger L, Nilsson RH, Kennedy PG, Yang T, Anslan S, Mikryukov V (2022) Best practices in metabarcoding of fungi: from experimental design to results. Mol Ecol 31:2769–2795

    Article  PubMed  Google Scholar 

  • Tsilimigras MCB, Fodor AA (2016) Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol 26:330–335

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc a Guid to methods Appl 18:315–322

    Google Scholar 

  • Wright ES (2016) Using DECIPHER v2. 0 to analyze big biological sequence data in R. R J. 8:352–359

    Article  Google Scholar 

  • Yang L, Lou J, Wang H, Wu L, Xu J (2018a) Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ 633:360–371

    Article  CAS  PubMed  Google Scholar 

  • Yang R-H, Su J-H, Shang J-J, Wu Y-Y, Li Y, Bao D-P, Yao Y-J (2018b) Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. PLoS One 13:e0206428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding came from the IFAPA grant PP.AVA.AVA2019.034, financed by the Junta de Andalucía with 80% FEDER funds from the European Union. The Spanish Collection of Type Cultures (CECT; http://www.uv.es), Valencia, supplied Yarrowia lipolytica strain CECT 1240. MC-S has a postdoctoral contract from the Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020). Part of the analysis was done in the High-Performance Computing cluster hosted by the Centro Informático Científico de Andalucía, CICA (https://www.cica.es/). Dr. Nieves Capote facilitated access to part of the laboratory equipment. María Camacho provided comments to the manuscript. Berta de los Santos and María Camacho and Luis Miranda led the field work.

Author information

Authors and Affiliations

Authors

Contributions

MC-S is responsible for all aspects of this work.

Corresponding author

Correspondence to Miguel Camacho-Sanchez.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary Information S1: preparation of fungus spike-in with Yarrowia lipolytica. (DOCX 15 kb)

ESM 2

Supplementary Information S2: Excel template for estimating input spike-in to add to biological samples from qPCR results. (XLSX 15 kb)

ESM 3

Supplementary Information S3: ITSx workflow and its comparison with the main dada2 workflow. (DOCX 38 kb)

ESM 4

Supplementary Information S4: Estimation in the dataset of the input spike-in to add to biological samples from qPCR results. (XLSX 24 kb)

ESM 5

Supplementary Information S5: Sequencing output, filtered reads, wild/spike-in reads, and alpha diversity for each sample. (XLSX 6 kb)

ESM 6

Supplementary Information S6: NCBI SRA and BioSample accessions for each sample. (XLSX 9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho-Sanchez, M. A new spike-in-based method for quantitative metabarcoding of soil fungi and bacteria. Int Microbiol (2023). https://doi.org/10.1007/s10123-023-00422-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10123-023-00422-5

Keywords

Navigation