Skip to main content
Log in

Metagenomic sequencing reveals swine lung microbial communities and metagenome-assembled genomes associated with lung lesions—a pilot study

  • Research
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Low microbial biomass in the lungs, high host-DNA contamination and sampling difficulty limit the study on lung microbiome. Therefore, little is still known about lung microbial communities and their functions. Here, we perform a preliminary exploratory study to investigate the composition of swine lung microbial community using shotgun metagenomic sequencing and compare the microbial communities between healthy and severe-lesion lungs. We collected ten lavage-fluid samples from swine lungs (five from healthy lungs and five from severe-lesion lungs), and obtained their metagenomes by shotgun metagenomic sequencing. After filtering host genomic DNA contamination (93.5% ± 1.2%) in the lung metagenomic data, we annotated swine lung microbial communities ranging from four domains to 645 species. Compared with previous taxonomic annotation of the same samples by the 16S rRNA gene amplicon sequencing, it annotated the same number of family taxa but more genera and species. We next performed an association analysis between lung microbiome and host lung-lesion phenotype. We found three species (Mycoplasma hyopneumoniae, Ureaplasma diversum, and Mycoplasma hyorhinis) were associated with lung lesions, suggesting they might be the key species causing swine lung lesions. Furthermore, we successfully reconstructed the metagenome-assembled genomes (MAGs) of these three species using metagenomic binning. This pilot study showed us the feasibility and relevant limitations of shotgun metagenomic sequencing for the characterization of swine lung microbiome using lung lavage-fluid samples. The findings provided an enhanced understanding of the swine lung microbiome and its role in maintaining lung health and/or causing lung lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All shotgun metagenomic sequencing data are available through National Center for Biotechnology Information (NCBI) repositories under BioProject ID: PRJNA732170. (www.ncbi.nlm.nih.gov/bioproject/PRJNA732170).

References

  • Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C (2014) Binning metagenomic contigs by coverage and composition. Nat Methods 11:1144–1146

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, Maciejewski R (2020) Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 10:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamin DJ, Berger JO, Johannesson M, Nosek BA, Wagenmakers EJ, Berk R, Bollen KA, Brembs B, Brown L, Camerer C et al (2018) Redefine statistical significance. Nat. Hum Behav 2:6–10

    Article  Google Scholar 

  • Burgher Y, Miranda L, Rodriguez-Roche R, de Almeida Campos AC, Lobo E, Neves T, Martinez O, Timenetsky J (2014) Ureaplasma diversum in pneumonic lungs of swine. Infect Genet Evol 21:486–488

    Article  PubMed  Google Scholar 

  • Burucoa C, Axon A (2017) Epidemiology of Helicobacter pylori infection. Helicobacter 22(Suppl):1

    Google Scholar 

  • Carr VR, Chaguza C (2021) Metagenomics for surveillance of respiratory pathogens. Nat Rev Microbiol 19:285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, Rae D, Grundy S, Turner DJ, Wain J et al (2019) Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol 37:783–792

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zheng D, Liu B, Yang J, Jin Q (2016) VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 44:D694-697

    Article  CAS  PubMed  Google Scholar 

  • Cookson WOCM, Cox MJ, Moffatt MF (2017) New opportunities for managing acute and chronic lung infections. Nat Rev Microbiol 16:111

    Article  PubMed  Google Scholar 

  • Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ (2018) Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Beck JM, Huffnagle GB, Curtis JL (2015) Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography. Ann Am Thorac Soc 12:821–830

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J VegSci 14:927–930

    Google Scholar 

  • dos Santos SB, de Souza Neto OL, de Albuquerque PP, da Rocha Mota A, de Cassia Peixoto Kim P, de Moraes EP, do Nascimento ER, do Mota RA (2013) Detection of Ureaplasma spp. in semen samples from sheep in Brazil. Braz J Microbiol 44:911–914

    Article  PubMed  Google Scholar 

  • Elahi S, Holmstrom J, Gerdts V (2007) The benefits of using diverse animal models for studying pertussis. Trends Microbiol 15:462–468

    Article  CAS  PubMed  Google Scholar 

  • Fresia P, Antelo V, Salazar C, Gimenez M, D’Alessandro B, Afshinnekoo E, Mason C, Gonnet GH, Iraola G (2019) Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeti JG, Lana MV, Silva GS, Lerner L, de Campos CG, Haruni F, Colodel EM, Costa EF, Corbellini LG, Nakazato L et al (2014) Ureaplasma diversum as a cause of pustular vulvovaginitis in bovine females in Vale Guapore, Mato Grosso State, Brazil. Trop Anim Health Prod 46:1059–1063

    Article  PubMed  Google Scholar 

  • Gancia P, Delogu A, Pomero G (2014) Ureaplasma and bronchopulmonary dysplasia. Early Hum Dev 90(Suppl 1):S39-41

    Article  PubMed  Google Scholar 

  • Gil O, Diaz I, Vilaplana C, Tapia G, Diaz J, Fort M, Caceres N, Pinto S, Cayla J, Corner L et al (2010) Granuloma encapsulation is a key factor for containing tuberculosis infection in minipigs. PLoS ONE 5:e10030

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang T, Zhang M, Tong X, Chen J, Yan G, Fang S, Guo Y, Yang B, Xiao S, Chen C et al (2019) Microbial communities in swine lungs and their association with lung lesions. Microb Biotechnol 12:289–304

    Article  CAS  PubMed  Google Scholar 

  • Jiang N, Liu H, Wang P, Huang J, Han H, Wang Q (2019) Illumina MiSeq sequencing investigation of microbiota in bronchoalveolar lavage fluid and cecum of the swine infected with PRRSV. Curr Microbiol 76:222–230

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatri M, Dwivedi V, Krakowka S, Manickam C, Ali A, Wang L, Qin Z, Renukaradhya GJ, Lee CW (2010) Swine influenza H1N1 virus induces acute inflammatory immune responses in pig lungs: a potential animal model for human H1N1 influenza virus. J Virol 84:11210–11218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kostric M, Milger K, Krauss-Etschmann S, Engel M, Vestergaard G, Schloter M, Schöler A (2018) Development of a stable lung microbiome in healthy neonatal mice. Microb Ecol 75:529–542

    Article  CAS  PubMed  Google Scholar 

  • Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S (2015) Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology 144:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang X, Di D, Pan R, Gao Y, Xiao C, Li B, Wei J, Liu K, Qiu Y et al (2021) Comparative analysis of the pulmonary microbiome in healthy and diseased pigs. Mol Genet Genomics 296:21–31

    Article  CAS  PubMed  Google Scholar 

  • Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y (2020) A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12:315–330

    Article  PubMed  PubMed Central  Google Scholar 

  • Mare CJ, Switzer WP (1965) Mycoplasma hyopenumoniae, a causative agent of virus pig pneumonia. Vet Med 60:841–846

    CAS  Google Scholar 

  • Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K (2018) Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6:42

    Article  PubMed  PubMed Central  Google Scholar 

  • McMullen C, Alexander TW, Leguillette R, Workentine M, Timsit E (2020) Topography of the respiratory tract bacterial microbiota in cattle. Microbiome 8:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V (2012) The pig: a model for human infectious diseases. Trends Microbiol 20:50–57

    Article  CAS  PubMed  Google Scholar 

  • Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34:5623–5630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Dwyer DN, Dickson RP, Moore BB (2016) The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol 196:4839–4847

    Article  CAS  PubMed  Google Scholar 

  • Opriessnig T, Gimenez-Lirola LG, Halbur PG (2011) Polymicrobial respiratory disease in pigs. Anim Health Res Rev 12:133–148

    Article  CAS  PubMed  Google Scholar 

  • Pabst R (2020) The pig as a model for immunology research. Cell Tissue Res 380:287–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844

    Article  CAS  PubMed  Google Scholar 

  • Rajendhran J, Gunasekaran P (2011) Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 166:99–110

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT (2018) Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems 3:e00039–18

  • Rose DL, Tully JG, Wittler RGTaxonomy of some swine mycoplasmas: Mycoplasma suipneumoniae Goodwin, et al (1979) 1965, a later, objective synonym of Mycoplasma hyopneumoniae Mare and Switzer 1965, and the status of Mycoplasma flocculare Meyling and Friis 1972. Int J Syst Evolut Microbiol 29:83–91

    Google Scholar 

  • Roumpeka DD, Wallace RJ, Escalettes F, Fotheringham I, Watson M (2017) A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front Genet 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Tang H, Doak TG, Ye Y (2011) Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun metagenomics. Pac Symp Biocomput 16:165–176

    Google Scholar 

  • Siqueira FM, Perez-Wohlfeil E, Carvalho FM, Trelles O, Schrank IS, Vasconcelos ATR, Zaha A (2017) Microbiome overview in swine lungs. PLoS One 12:e0181503

    Article  PubMed  PubMed Central  Google Scholar 

  • Sulaiman I, Schuster S, Segal LN (2020) Perspectives in lung microbiome research. Curr Opin Microbiol 56:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Uritskiy GV, DiRuggiero J, Taylor J (2018) MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6:158

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu YW, Simmons BA, Singer SW (2016) MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32:605–607

    Article  CAS  PubMed  Google Scholar 

  • Wu BG, Kapoor B, Cummings KJ, Stanton ML, Nett RJ, Kreiss K, Abraham JL, Colby TV, Franko AD, Green FHY et al (2020) Evidence for environmental-human microbiota transfer at a manufacturing facility with novel work-related respiratory disease. Am J Respir Crit Care Med 202:1678–1688

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Chen B, Yang Y, Yi X, Wei M, Ecklu-Mensah G, Buschmann MM, Liu H, Gao J, Liang W et al (2022) Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol 7:1361–1375

    Article  CAS  PubMed  Google Scholar 

  • Yiwen C, Yueyue W, Lianmei Q, Cuiming Z, Xiaoxing Y (2021) Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 12:788–817

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Xiao D, Zhang H, Zhang Y, Gao Y, Xu L, Lv J, Wang Y, Zhang J, Shao Z (2013) MALDI-TOF MS distinctly differentiates nontypable Haemophilus influenzae from Haemophilus haemolyticus. PLoS One 8:e56139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou G, Xiaobing Z, Xiangyang Q, Congzhou Z (2013) Health monitoring of pigs: establishment and application of a slaughterhouse disease assessment system. Swine Prod 1:94–96

    Google Scholar 

Download references

Funding

This work was supported by grants from National Swine Industry and Technology System of China (nycytx-009), Guangdong Sail Plan Introduction of Innovative and Entrepreneurship Research Team Program (2016YT03H062).

Author information

Authors and Affiliations

Authors

Contributions

H.A. conceived and designed the experiments, and revised the manuscript. L.H. conceived and designed the experiments, and revised the manuscript. J. L. analyzed the data, and wrote the manuscript. T. H., M.Z., X. T., J. C., Z. Z., and F.H. collected the samples and performed experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huashui Ai.

Ethics declarations

Ethics approval

All experimental animal works were conducted according to the guidelines for the care and use of experimental animals established by the Ministry of Agriculture of China. Animal Care and Use Committee in Jiangxi Agricultural University specially approved this project.

Consent to participate

Not applicable.

Conflict interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2972 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Huang, T., Zhang, M. et al. Metagenomic sequencing reveals swine lung microbial communities and metagenome-assembled genomes associated with lung lesions—a pilot study. Int Microbiol 26, 893–906 (2023). https://doi.org/10.1007/s10123-023-00345-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-023-00345-1

Keywords

Navigation