Skip to main content

Advertisement

Log in

Phenotypic, stress tolerance, and plant growth promoting characteristics of rhizobial isolates of grass pea

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Grass pea (Lathyrus sativus L.) is widely cultivated for food and feed in some developing countries including Ethiopia. However, due to its overexaggerated neuro-lathyrism alkaloid causing paralysis of limbs, it failed to attract attention of the research community and is one of the most neglected orphan crops in the world. But, the crop is considered an insurance crop by resource-poor farmers due to its strong abiotic stress tolerance and ability to produce high yields when all other crops fail due to unfavorable environmental conditions. This study was aimed at screening rhizobial isolates of grass pea and evaluating their symbiotic nitrogen fixation efficiency and tolerance to abiotic stresses. Fifty rhizobial isolates collected from grass pea nodules were isolated, screened, and characterized based on standard microbiological methods. The rhizobial isolates showed diversity in nodulation, symbiotic nitrogen fixation, and nutrient utilization. The 16S rRNA gene sequencing of 14 rhizobial isolates showed that two of them were identified as Rhizobium leguminosarum and the remaining twelve as Rhizobium species. Based on their overall performance, strains AAUGR-9, AAUGR-11, and AAUGR-14 that performed top and identified as Rhizobium species were recommended for field trials. This study screened and identified effective and competitive rhizobial isolates enriched with high nitrogen-fixing and abiotic stress tolerant traits, which contributes much to the application of microbial inoculants as alternative to chemical fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullah MKA-F (2002) Factors affecting the efficiency of symbiotic nitrogen fixation by Rhizobium. Pak J Biol Sci 5(11):1277–1293

    Article  Google Scholar 

  • Abera T, Semu E, Debele T, Wegary D, Haekoo K (2010) Effects of faba bean break crop and N rates on subsequent grain yield and nitrogen use efficiency of highland maize varieties in Toke Kutaye, western Ethiopia. WJAS 11(5):311–324

    Google Scholar 

  • Adal M, Tadege M, Assefa F (2018) Rhizospheric bacterial isolates of grass pea (Lathyrus sativus L.) endowed with multiple plant growth promoting traits. J Appl Microbiol 125(6):1–16

    Google Scholar 

  • Amargar N, Macheret V, Aguerre G (1997) Rhizobum gallicum sp. Nov, and Rhizobum giardinii sp. Nov. from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006

    Article  Google Scholar 

  • Amsalu A, Assefa F, Hailemariam A (2012) Symbiotic and phenotypic characterization of Rhizobium isolates of field pea (Pisum sativum L.) Fabaceae, from central and southern Ethiopia. Ethiop J Biol Sci 11(2):163–179

  • Andres JA, Rovera M, Guiñazú LB, Pastor NA, Rosas SB (2012) Interactions between legumes and rhizobia under stress conditions. In: Dinesh KM (ed) Bacteria in agrobiology: stress management. Springer-Verlag, Berlin, pp 77–94. https://doi.org/10.1007/978-3-642-23465-1-5

  • Aoki S, Kondo T, Prévost D, Nakata S, Kajita T (2010) Genotypic and phenotypic diversity of rhizobia isolated from Lathyrus japonicus indigenous to Japan. Syst Appl Microbiol 33:383–397

    Article  CAS  PubMed  Google Scholar 

  • Argaw A (2012a) Characterization of symbiotic effectiveness of rhizobia nodulating faba bean (Vicia faba L.) isolated from Central Ethiopia. Res J Microbiol 7(6):280–296

    Article  Google Scholar 

  • Argaw A (2012b) Evaluation of symbiotic effectiveness and size of resident Rhizobium leguminosarum var. viciae nodulating lentil (Lens culinaris medic) in some Ethiopian soils. Int J Agr & Agri R 2(4):18–31

    Google Scholar 

  • Baye K, Kebede A, Assefa F (2015) Isolation and phenotypic characterization of field pea nodulating rhizobia from Eastern Ethiopia soils. World Appl Sci J 33(12):1815–1821

    Google Scholar 

  • Belay Z, Assefa F (2011) Symbiotic and phenotypic diversity of Rhizobiumleguminosarum bv. viciae from Northern Gondar, Ethiopia. Afr J Biotechnol 10(21):4372–4379

    Google Scholar 

  • Berkum V, Desta B, Vera FT, Keyser HH (1995) Variability among Rhizobium strains originating from nodules of Vicia faba. Appl Environ Microbiol 6:2649–2653

    Article  Google Scholar 

  • Bernal G, Graham PH (2001) Diversity in the rhizobia associated with Phaseolus vulgaris L. in Ecuadore and comparisons with Mexican bean rhizobia. Can J Microbiol 47:526–534

  • Berrada H, Nouioui I, Houssaini MI, Ghachtouli N, Maher G, Benbrahim KF (2012) Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of multiple legume species native of Fez, Morocco. Afr J Microbiol Res 6(25):5314–5324

    CAS  Google Scholar 

  • Beyene D, Kassa S, Assefa F, Gebremedhin H, Berkum P (2004) Ethiopian soils harbor natural populations of rhizobia that form symbioses with common bean (Phaseolus vulgaris L.). Arch Microbiol 181:129–136

    Article  CAS  PubMed  Google Scholar 

  • Bhargava Y, Murthy JSR, Kumar TVR, Rao MN (2016) Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv Microbiol 6:1–12

    Article  CAS  Google Scholar 

  • Bontemps C, Elliott GN, Simon MF (2010) Burkholderia species are ancient symbionts of legumes. Mol Ecol 19:44–52

    Article  CAS  PubMed  Google Scholar 

  • Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129–137

    Article  CAS  Google Scholar 

  • Buck JD (1982) Non-staining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44(4):992–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charabarti S, Lee MS, Gibson AH (1981) Diversity in the nutritional requirements of strains of various Rhizobium species. Soil Biol Biochem 13:349–354

    Article  Google Scholar 

  • Cloutier J, Prevost D, Nadeau P, Antoun H (1992) Heat and cold shock protein synthesis in arctic and temperate strains of rhizobia. Appl Environ Microbiol 58(9):2846–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CSA (Central Statistical Authority) (2017) Agricultural samples survey 2016/2017 report on area and production of crops. Volume I. Statistical Bulletin, Number 584, Addis Ababa, Ethiopia

  • Demelash H, Abera S, Teka TA (2015) Effects of processing on nutritional composition and anti-nutritional factors of grass pea (Lathyrus Sativus L.): a review. Food Science and Quality Management. 36:61–71

    Google Scholar 

  • Drouin P, Prevost D, Antoun H (1996) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol Ecol. 32(2000):111–120

    Google Scholar 

  • Eardly B, Wang F, Berkum PV (1996) Corresponding 16S rRNA gene segments in Rhizobiaceae and Aeromonas yield discordant phylogenies. Plant Soil 186:69–74

    Article  CAS  Google Scholar 

  • Elizabeth D, David H, Ross B, Graham O, Rosalind D, Matthew D, Ron Y, Greg G, Elizabeth H, Lori P, Nikki S, John H, Neil B (2012) Inoculating legumes: a practical guide. Grains Research and Development Corporation

  • Fitouri DS, Ben JF, Zribi K, Rezgui S, Mhamdi R (2012) Effect of inoculation with osmotolerant strain of Rhizobium sullae on growth and protein production of sulla (Sulla coronarium L.) under water deficit. J Appl Biosci 51:642–3651

    Google Scholar 

  • Gauri AS, Rajendra PB, Shailja PM, Kaur B, Ashok N (2011) Characterization of Rhizobium isolated from root nodules of Trifolium alexandrinum. J Agric Technol 7(6):1705–1723

    Google Scholar 

  • Gebremariam A, Assefa F (2017) The effect of inter cross-inoculation host group rhizobia on the growth and nitrogen fixation of Faba Bean (Vicia faba L.) varieties in North Showa, Amhara Regional State, Ethiopia. J Agric Biotech Sustain. Dev 10(2):25–33

    Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial process in agricultural soils: a review. Soil Biol Biochem 30:1389–1414

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9

    Google Scholar 

  • Hewedy OM, Eissa RA, Elzanaty AM, Nagaty HH, Abd-Elbary MI (2014) Phenotypic and genotypic diversity of rhizobia nodulating faba bean from various Egyptian locations. J Bioproces Biotechniq 4(5):1–8

    Article  CAS  Google Scholar 

  • Jennifer SM (2003) A brief history of grass pea and its use in crop improvement. Lathyrus/Lathyrism news Letter 3:18–20

    Google Scholar 

  • Jida M, Assefa F (2011) Phenotypic and plant growth promoting characteristics of Rhizobium leguminosarum bv. viciae from lentil growing areas of Ethiopia. Afr. J Microbiol Res 5(24):4133–4142

    Google Scholar 

  • Jordan DC (1984) Rhizobiaceae. In: Krieg N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams, and Wilkins, Baltimore, pp 235–256

    Google Scholar 

  • Keneni A, Assefa F, Prabu PC (2010) Characterization of acid and salt tolerant rhizobial strains isolated from faba bean fields of Wollo, Northern Ethiopia. J Agr Sci Tech 12:365–376

    CAS  Google Scholar 

  • Laguerre G, Louvrier P, Allard MR, Amarger N (2003) Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol 69(4):2276–2283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakzian A, Murphy V, Turner A, Beynon JL, Giller KE (2002) Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metaltolerance. Soil Biol Biochem 34:519–529

    Article  CAS  Google Scholar 

  • Lebrazi S, Benbrahim KF (2014) Environmental stress conditions affecting the N2 fixing Rhizobium–legume symbiosis and adaptation mechanisms. Afr J Microbiol Res 8(53):4053–4061

    Google Scholar 

  • Legesse S, Assefa F (2013) Symbiotic and phenotypic characteristics of rhizobia nodulating faba bean (Vicia Faba) from Tahtay Koraro, Northwestern zone of Tigray Regional State, Ethiopia. IJEERT 2(11):15–23

    Google Scholar 

  • Lupwayi NZ, Haque I (1994) Working document: legume-rhizobium technology manual. Environmental science division international livestock center for Africa, Addis Ababa, pp 1–40

    Google Scholar 

  • Maâtallah J, Berraho EB, Sanjuan J, Lluch C (2002) Phenotypic characterization of rhizobia isolated from chickpea (Cicer arietinum) growing in Moroccan soils. Agronomie 22:321–329

    Article  Google Scholar 

  • Mahdavi B, Seyed AM, Modarres S, Majid A (2007) Nodulation and root traits in four grass pea (Lathyrus sativus) ecotypes under root zone temperatures. Pak J Biol Sci 10(8):1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean-nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mnalku A, Gebrekidan H, Assefa F (2009) Symbiotic effectiveness and characterization of Rhizobium strains of Faba bean (Vicia faba L.) collected from Eastern and Western Hararghe highlands of Ethiopia. EJNR 11(2):223–244

    Google Scholar 

  • Moges G, Wodajo N, Gorton L, Yigzaw Y, Kalcher K, Belay A, Akalu G, Baboo MN, Solomon T (2004) Glutamate oxidase advances the selective bioanalytical detection of the neurotoxic amino acid ß-ODAP in grass pea: a decade of progress. Pure Appl Chem 76(4):765–775

    Article  CAS  Google Scholar 

  • Mohamed HA, Fatthy MM, Abdel-Wahab EET (2012) Isolation and characterization of a heavy-metal-resistant isolate of Rhizobium leguminosarum bv. viciae potentially applicable for biosorption of Cd2+ and Co2+. Int Biodeterior Biodegradation 67:48–55

    Article  CAS  Google Scholar 

  • Mohammad RM, Kharazian AA, Campbell WF, Rumbaugh MD (1991) Identification of salt- and drought-tolerant Rhizobium meliloti strains. Plant Soil 134:271–276

    Article  Google Scholar 

  • Monsoor MA, Yusuf HK (2002) In vitro protein digestibility of lathyrus pea (Lathyrus sativus), lentil (Lens culinaris), and chickpea (Cicer arietinum). Int J Food Sci Technol 37:97–99

    Article  CAS  Google Scholar 

  • Mulongoy K (2004) Technical paper 2. Biological nitrogen fixation. Can J Microbiol 21:1–19

  • Neelawan P (2012) Phenotypic and genotypic diversity of rhizobia. Silpakorn University, Thailand, pp 3–48

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid MH, Schäfer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Rivas R, García-Fraile P, Velázquez E (2009) Taxonomy of bacteria nodulating legumes. Rev Microbiol Insight 2:251–269

    Google Scholar 

  • Santillana N, Ramirez-Bahena MH, Garcia-Fraile P, Velazquez E, Zuniga D (2008) Phylogenetic diversity based on rrs, atpD, recA genes 16S–23S intergenic sequence analyses of rhizobial strains isolated from Vicia faba and Pisum sativum in Peru. Arch Microbiol 189:239–247

    Article  CAS  PubMed  Google Scholar 

  • Setargie A, Tilahun S, Alemayehu S, Dejenie T, Kiros S (2015) Isolation and phenotypic characterization of phosphate solubilizing bacteria from lentil (Lens culnaris.) rhizosphere soils from southern parts of Tigray, Ethiopia. Intl. J Microbiol Res 6(3):188–194

    CAS  Google Scholar 

  • Shayne JJ, Hugenholtz P, Sangwan P, Osborne C, Jansen HP (2003) Laboratory cultivation of widespread and previously uncultured bacteria. Appl Environ Microbiol 69:7211–7214

    Google Scholar 

  • Somasegaren P, Hoben HJ (1985) Methods in legumerhizobium technology. University of Hawaii NifTAL Project and MIRCEN Department of Agronomy and Soil Science. USAID, USA

  • Somasegaren P, Hoben HJ (1994) Hand book for rhizobia. Methods in legume-rhizobium technology. Springer – Verlag, New York, pp 1–441

    Google Scholar 

  • Tena W, Wolde-Meskel E, Walley F (2016) Symbiotic efficiency of native and exotic Rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 6:1–11

  • Tena W, Wolde-Meskel E, Degefu T, Fran W (2017) Lentil (Lens culinaris Medik.) nodulates with genotypically and phenotypically diverse rhizobia in Ethiopian soils. Syst Appl Microbiol 40:22–33

    Article  PubMed  Google Scholar 

  • Tsegaye D, Assefa F, Gebrekidan H, Keneni A (2015) Nutritional, ecophysiological and symbiotic characteristics of rhizobia nodulating faba bean (Vicia faba L.) collected from acidic soils of Ethiopia. Afr J Environ Sci Technol 9(7):646–654

  • Urga K, Fufa H, Biratu E, Husain A (2005) Evaluation of Lathyrus sativus cultivated in Ethiopia for proximate composition, minerals, ODAP and anti-nutritional components. Afr J Food Agric Nutr Dev 0.5(1):1–16

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell sci. publ. oxford. PP.164.

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wei GH, Yang X, Zhang YZ, Lindstrom K (2008) Strain Mesorhizobium sp. CCNWGX035: a stress tolerant isolate from Glycyrriza glabra displaying a wide host range of nodulation. Pedosphere 18:102–112

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S RibosomalDNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner D, Newton WE (2005) Nitrogen fixation in agriculture, forestry, ecology, and the environment. Springer Publication.

  • White D (1995) The physiology and biochemistry of prokaryotes. Oxford University Press. PP. 34-46

  • Wielbo J, Kidaj D, Koper P, Kubik-Komar A, Skorupska A (2012) The effect of biotic and physical factors on the competitive ability of Rhizobium leguminosarum. Cent Eur J Biol 7(1):13–24

    CAS  Google Scholar 

  • Wolde-Meskel E (2007) Genetic diversity of rhizobia in Ethiopian soils: their potential to enhance biological N fixation (BNF) and soil fertility for sustainable agriculture. Ethiop. J Biol Sci 6(1):77–95

    Google Scholar 

  • Workalemahu A (2009) The effect of indigenous root-nodulating bacteria on nodulation and growth of faba bean (Vicia Faba) in the low-input agricultural systems of tigray highlands, Northern Ethiopia. MEJS 1(2):30–43

  • Zabaloy MC, Gomez MA (2005) Diversity of rhizobia isolated from an agricultural soil in Argentina based on carbon utilization and effects of herbicides on growth. Biol Fertil Soils 42:83–88

    Article  Google Scholar 

  • Zahran HH (1999) Rhizobium leguminosarum symbiosis and nitrogen fixation under severe conditions and in an Arid Climate. Microbiol Mol Biol Rev 63:968–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH, Abdel-Fattah M, Ahmad MS, Zaki AY (2003) Polyphasic taxonomy of symbiotic rhizobia from wild leguminous plants growing in Egypt. Folia Microbiologica 48:510–520

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH, Abdel-Fattah M, Yasser MM, Mahmoud AM, Bedmar EJ (2012) Diversity and environmental stress responses of rhizobial bacteria from Egyptian grain legumes. Aust J Basic & Appl Sci 6(10):571–558

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shiping Deng for providing 16S rRNA gene primers and helpful suggestions. This work was supported by funds from Addis Ababa University, Wollo University and Oklahoma State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mussa Adal Mohammed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.A., Chernet, M.T. & Tuji, F.A. Phenotypic, stress tolerance, and plant growth promoting characteristics of rhizobial isolates of grass pea. Int Microbiol 23, 607–618 (2020). https://doi.org/10.1007/s10123-020-00131-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-020-00131-3

Keywords

Navigation