Skip to main content
Log in

An Insight into the Constitutive Proteome Throughout Leishmania donovani Promastigote Growth and Differentiation

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Anthroponotic visceral leishmaniasis is a life-threatening disease caused by Leishmania donovani (Kinetoplastida: Trypanosomatidae) in East Africa and the Indian subcontinent. Unlike promastigote growth and differentiation in the sand fly gut or in axenic culture, L. donovani promastigote-into-amastigote development has been studied by high-throughput gene expression profiling. In this study, we have identified abundant constitutive proteins in axenically cultured promastigotes by two-dimension electrophoresis and matrix-assisted laser desorption-ionization tandem time-of-flight (MALDI-TOF/TOF) mass spectrometry. Most proteins involved in the trypanothione-based redox antioxidant system are expressed constitutively throughout axenic L. donovani promastigote growth and differentiation (tryparedoxin, trypanothione peroxidase, generic peroxidoxin, iron-superoxide dismutase, and elongation factor 1β). These findings are in agreement with previous data on other Old World species (i.e., L. major and L. infantum), whereas New World species (i.e., L. amazonensis and L. pifanoi) and Crithidia fasciculata show different expression patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86

    Article  CAS  PubMed  Google Scholar 

  • Alcolea PJ, Alonso A, Gomez MJ, Moreno I, Dominguez M, Parro V, Larraga V (2010) Transcriptomics throughout the life cycle of Leishmania infantum: high down-regulation rate in the amastigote stage. Int J Parasitol 40:1497–1516

    Article  CAS  PubMed  Google Scholar 

  • Alcolea PJ, Alonso A, Larraga V (2011a) Genome-wide gene expression profile induced by exposure to cadmium acetate in Leishmania infantum promastigotes. Int Microbiol 14:1–11

    CAS  PubMed  Google Scholar 

  • Alcolea PJ, Alonso A, Larraga V (2011b) Proteome profiling of Leishmania infantum promastigotes. J Eukaryot Microbiol 58:352–358

    Article  CAS  PubMed  Google Scholar 

  • Alcolea PJ, Alonso A, Garcia-Tabares F, Torano A, Larraga V (2014a) An insight into the proteome of Crithidia fasciculata choanomastigotes as a comparative approach to axenic growth, peanut lectin agglutination and differentiation of Leishmania spp. promastigotes. PLoS One 9:e113837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcolea PJ, Alonso A, Gomez MJ, Postigo M, Molina R, Jimenez M, Larraga V (2014b) Stage-specific differential gene expression in Leishmania infantum: from the foregut of Phlebotomus perniciosus to the human phagocyte. BMC Genomics 15:849

    Article  PubMed  PubMed Central  Google Scholar 

  • Alcolea PJ, Alonso A, Dominguez M, Parro V, Jimenez M, Molina R, Larraga V (2016a) Influence of the microenvironment in the transcriptome of Leishmania infantum promastigotes: Sand Fly versus culture. PLoS Negl Trop Dis 10:e0004693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alcolea PJ, Alonso A, Garcia-Tabares F, Mena MD, Ciordia S, Larraga V (2016b) Proteome profiling of the growth phases of Leishmania pifanoi promastigotes in axenic culture reveals differential abundance of immunostimulatory proteins. Acta Trop 158:240–247

    Article  CAS  PubMed  Google Scholar 

  • Aphasizhev R, Aphasizheva I, Nelson RE, Gao G, Simpson AM, Kang X, Falick AM, Sbicego S, Simpson L (2003) Isolation of a U-insertion/deletion editing complex from Leishmania tarentolae mitochondria. EMBO J 22:913–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho EA, Costa LE, Lage DP, Martins VT, Garde E, de Jesus Pereira NC, Lopes EG, Borges LF, Duarte MC, Menezes-Souza D, de Magalhaes-Soares DF, Chavez-Fumagalli MA, Soto M, Tavares CA (2016) Evaluation of two recombinant Leishmania proteins identified by an immunoproteomic approach as tools for the serodiagnosis of canine visceral and human tegumentary leishmaniasis. Vet Parasitol 215:63–71

    Article  CAS  PubMed  Google Scholar 

  • Day BJ (2009) Catalase and glutathione peroxidase mimics. Biochem Pharmacol 77:285–296

    Article  CAS  PubMed  Google Scholar 

  • Depledge DP, Evans KJ, Ivens AC, Aziz N, Maroof A, Kaye PM, Smith DF (2009) Comparative expression profiling of Leishmania: modulation in gene expression between species and in different host genetic backgrounds. PLoS Negl Trop Dis 3:e476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Descoteaux A, Avila HA, Zhang K, Turco SJ, Beverley SM (2002) Leishmania LPG3 encodes a GRP94 homolog required for phosphoglycan synthesis implicated in parasite virulence but not viability. EMBO J 21:4458–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desjeux P (2001) The increase in risk factors for leishmaniasis worldwide. Trans R Soc Trop Med Hyg 95:239–243

    Article  CAS  PubMed  Google Scholar 

  • Dutta M, Delhi P, Sinha KM, Banerjee R, Datta AK (2001) Lack of abundance of cytoplasmic cyclosporin A-binding protein renders free-living Leishmania donovani resistant to cyclosporin A. J Biol Chem 276:19294–19300

    Article  CAS  PubMed  Google Scholar 

  • Flohe L, Hecht HJ, Steinert P (1999) Glutathione and trypanothione in parasitic hydroperoxide metabolism. Free Radic Biol Med 27:966–984

    Article  CAS  PubMed  Google Scholar 

  • Gretes MC, Poole LB, Karplus PA (2012) Peroxiredoxins in parasites. Antioxid Redox Signal 17:608–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzer TR, McMaster WR, Forney JD (2006) Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Mol Biochem Parasitol 146:198–218

    Article  CAS  PubMed  Google Scholar 

  • Kabututu Z, Martin SK, Nozaki T, Kawazu S, Okada T, Munday CJ, Duszenko M, Lazarus M, Thuita LW, Urade Y, Kubata BK (2002) Prostaglandin production from arachidonic acid and evidence for a 9,11-endoperoxide prostaglandin H2 reductase in Leishmania. Int J Parasitol 32:1693–1700

    Article  CAS  PubMed  Google Scholar 

  • Lahav T, Sivam D, Volpin H, Ronen M, Tsigankov P, Green A, Holland N, Kuzyk M, Borchers C, Zilberstein D, Myler PJ (2011) Multiple levels of gene regulation mediate differentiation of the intracellular pathogen Leishmania. FASEB J 25:515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35-46.

  • Levick MP, Tetaud E, Fairlamb AH, Blackwell JM (1998) Identification and characterisation of a functional peroxidoxin from Leishmania major. Mol Biochem Parasitol 96:125–137

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lindsay ME, Motyka SA, Englund PT, Wang CC (2008) Identification of a bacterial-like HslVU protease in the mitochondria of Trypanosoma brucei and its role in mitochondrial DNA replication. PLoS Pathog 4:e1000048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald SM, Langdon JM, Greenlee BM, Kagey-Sobotka A, Lichtenstein LM (1991) IgE-dependent histamine-releasing factors. A brief review. Int Arch Allergy Appl Immunol 94:144–147

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes RD, Duarte MC, Mattos EC, Martins VT, Lage PS, Chavez-Fumagalli MA, Lage DP, Menezes-Souza D, Regis WC, Manso Alves MJ, Soto M, Tavares CA, Nagen RA, Coelho EA (2014) Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 8:e2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nirujogi RS, Pawar H, Renuse S, Kumar P, Chavan S, Sathe G, Sharma J, Khobragade S, Pande J, Modak B, Prasad TS, Harsha HC, Patole MS, Pandey A (2014) Moving from unsequenced to sequenced genome: reanalysis of the proteome of Leishmania donovani. J Proteome 97:48–61

    Article  CAS  Google Scholar 

  • Panigrahi AK, Schnaufer A, Carmean N, Igo RP Jr, Gygi SP, Ernst NL, Palazzo SS, Weston DS, Aebersold R, Salavati R, Stuart KD (2001) Four related proteins of the Trypanosoma brucei RNA editing complex. Mol Cell Biol 21:6833–6840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar H, Sahasrabuddhe NA, Renuse S, Keerthikumar S, Sharma J, Kumar GS, Venugopal A, Sekhar NR, Kelkar DS, Nemade H, Khobragade SN, Muthusamy B, Kandasamy K, Harsha HC, Chaerkady R, Patole MS, Pandey A (2012) A proteogenomic approach to map the proteome of an unsequenced pathogen - Leishmania donovani. Proteomics 12:832–844

    Article  CAS  PubMed  Google Scholar 

  • Rastrojo A, Carrasco-Ramiro F, Martin D, Crespillo A, Reguera RM, Aguado B, Requena JM (2013) The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics 14:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochette A, Raymond F, Corbeil J, Ouellette M, Papadopoulou B (2009) Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Mol Biochem Parasitol 165:32–47

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig D, Smith D, Opperdoes F, Stern S, Olafson RW, Zilberstein D (2008) Retooling Leishmania metabolism: from sand fly gut to human macrophage. FASEB J 22:590–602

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, Volpin H, Myler PJ, Zilberstein D (2007) Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol 152:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Sharma P, Selvapandiyan A, Salotra P (2016) Leishmania donovani-specific Ub-related modifier-1: an early endosome-associated ubiquitin-like conjugation in Leishmania donovani. Mol Microbiol 99:597–610

    Article  CAS  PubMed  Google Scholar 

  • Srividya G, Duncan R, Sharma P, Raju BV, Nakhasi HL, Salotra P (2007) Transcriptome analysis during the process of in vitro differentiation of Leishmania donovani using genomic microarrays. Parasitology 134:1527–1539

    Article  CAS  PubMed  Google Scholar 

  • Tsigankov P, Gherardini PF, Helmer-Citterich M, Spath GF, Zilberstein D (2013) Phosphoproteomic analysis of differentiating Leishmania parasites reveals a unique stage-specific phosphorylation motif. J Proteome Res 12:3405–3412

    Article  CAS  PubMed  Google Scholar 

  • Vickers TJ, Fairlamb AH (2004) Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B. J Biol Chem 279:27246–27256

    Article  CAS  PubMed  Google Scholar 

  • Vickers TJ, Wyllie S, Fairlamb AH (2004) Leishmania major elongation factor 1B complex has trypanothione S-transferase and peroxidase activity. J Biol Chem 279:49003–49009

    Article  CAS  PubMed  Google Scholar 

  • Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N, Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-Bartolome S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker J, Acestor N, Gongora R, Quadroni M, Segura I, Fasel N, Saravia NG (2006) Comparative protein profiling identifies elongation factor-1beta and tryparedoxin peroxidase as factors associated with metastasis in Leishmania guyanensis. Mol Biochem Parasitol 145:254–264

    Article  CAS  PubMed  Google Scholar 

  • Wessel D, Flugge UI (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138:141–143

    Article  CAS  PubMed  Google Scholar 

  • Westrop GD, Williams RA, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH (2015) Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One 10:e0136891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2010) Report of a meeting of the WHO expert committee on the control of Leishmaniases. In: Geneva

    Google Scholar 

Download references

Acknowledgments

We acknowledge Alfredo Toraño and Mercedes Domínguez for kind supply of the L. donovani strain used in this study. The CIB-CSIC Laboratory of Molecular Parasitology thanks the Ramón Areces Foundation (2016 call) for a contract. The CNB-CSIC Proteomics Facility belongs to ProteoRed (PRB2-ISCIII) and has been funded with grant PT13/0001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Alcolea.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

ESM 1

(XLSX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alcolea, P.J., Alonso, A., García-Tabares, F. et al. An Insight into the Constitutive Proteome Throughout Leishmania donovani Promastigote Growth and Differentiation. Int Microbiol 22, 143–154 (2019). https://doi.org/10.1007/s10123-018-00036-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-00036-2

Keywords

Navigation