Skip to main content
Log in

Preparation and Rheological Characterization of Long Chain Branching Polyglycolide

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The long chain branching (LCB) polyglycolide (PGA) was successfully prepared by the successive reactions of the terminal hydroxyl groups of PGA with triglycidyl isocyanurate (TGIC) and pyromellitic dianhydride (PMDA). The influence of LCB produced by functional group reaction on rheological and crystallization behavior was studied and discussed through linear rheology, uniaxial elongation and DSC (differential scanning calorimetry). The much higher viscosity and the more notable strain hardening behavior of modified PGA indicates the LCB with high degree of entanglements are created. The melt strength of PGA is finally improved greatly and can make sure that the supercritical CO2 foaming can be carried out successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available on request from the corresponding authors. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Divya, G. Polyhydroxy alkanoates—a sustainable alternative to petro-based plastics. J. Pet. Environ. Biotechnol. 2013, 4, 1–8.

    Article  Google Scholar 

  2. Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a multi-functional epoxide: Physico-chemical and rheological properties. Eur. Polym. J. 2014, 58, 90–102.

    Article  CAS  Google Scholar 

  3. Corre, Y. M.; Maazouz, A.; Duchet, J.; Reignier, J. Batch foaming of chain extended PLA with supercritical CO2: influence of the rheological properties and the process parameters on the cellular structure. J. Supercrit. Fluids 2011, 58, 177–188.

    Article  CAS  Google Scholar 

  4. Wang, K.; Shen, J.; Ma, Z.; Zhang, Y.; Pang, S. Preparation and properties of poly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate)/polyglycolic acid (PETG/PGA) blends. Polymers 2021, 13, 452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Báez, J. E.; Marcos-Fernández, Á. A comparison of three different biodegradable aliphatic oligoesters (PGA, PLLA, and PCL) with similar linear alkyl end groups by DSC and SAXS. Int. J. Polym. Anal. Charact. 2015, 20, 637–644.

    Article  Google Scholar 

  6. Casalini, T.; Rossi, F.; Santoro, M.; Perale, G. Structural Characterization of poly-L-lactic acid (PLLA) and poly(glycolic acid)(PGA) oligomers. Int. J. of Mol. Sci. 2011, 12, 3857–3870.

    Article  CAS  Google Scholar 

  7. Jie, L. Y.; Andri, A.; Chin, A. B.; Ishida, Z. A. N. Bioresorbable and degradable behaviors of PGA: current state and future prospects. Polym. Eng. Sci. 2020, 60, 2657–2675.

    Article  Google Scholar 

  8. Lanlan, C.; Xiaojie, S.; Yueqing, R.; Rong, W.; Wenbin, L.; Xuelei, D. Influence of chain extenders on the melt strength and thermal stability of polyglycolic acid. J. Appl. Polym. Sci. 2021, 138, 50551.

    Article  Google Scholar 

  9. Yu, C.; Bao, J.; Xie, Q.; Shan, G.; Bao, Y.; Pan, P. Crystallization behavior and crystalline structural changes of poly(glycolic acid) investigated via temperature-variable WAXD and FTIR analysis. CrystEngComm 2016, 18, 7894–7902.

    Article  CAS  Google Scholar 

  10. Jem, K. J.; Tan, B. The development and challenges of poly(lactic acid) and poly(glycolic acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70.

    Google Scholar 

  11. Jr, A. Bioresorbable polymers for tissue engineering. Tissue Eng. 2010, 235–246.

  12. Lee, S.; Hongo, C.; Nishino, T. Crystal modulus of poly(glycolic acid) and its temperature dependence. Macromolecules 2017, 50, 5074–5079.

    Article  CAS  Google Scholar 

  13. Chang, L. F.; Zhou, Y. G.; Ning, Y.; Zou, J. Toughening effect of physically blended polyethylene oxide on polyglycolic acid. J. Polym. Environ. 2020, 28, 2125–2136.

    Article  CAS  Google Scholar 

  14. Bersted, B. H. On the effects of very low levels of long chain branching on rheological behavior in polyethylene. J. Appl. Polym. Sci. 1985, 30, 3751–3765.

    Article  CAS  Google Scholar 

  15. Dorgan, J. R.; Lehermeier, H.; Mang, M. Thermal and rheological properties of commercial-grade poly(lactic acid)s. J. Polym. Environ. 2000, 8, 1–9.

    Article  Google Scholar 

  16. Helminen, A. Chain extending of lactic acid oligomers. Effect of 2,2′-bis(2-oxazoline) on 1,6-hexamethylene diisocyanate linking reaction. Polymer 2001, 42, 3333–3343.

    Article  Google Scholar 

  17. Inata, H.; Matsumura, S. Chain extenders for polyesters. IV. Properties of the polyesters chain-extended by 2,2′-bis(2-oxazoline). J. Appl. Polym. Sci. 1987, 33, 3069–3079.

    Article  CAS  Google Scholar 

  18. S.; M.; Aharoni; C.; E.; Forbes; W.; B.; Hammond; D. High-temperature reactions of hydroxyl and carboxyl PET chain end groups in the presence of aromatic phosphite. J. Polym. Sci., Part A: Polym. Chem. 2010, 24, 1281–1296.

    Article  Google Scholar 

  19. Tuominen, J.; Jv., S. Synthesis and characterization of lactic acid based poly(ester-amide). Macromolecules 2000, 33, 3530–3535.

    Article  CAS  Google Scholar 

  20. Woo, S. I.; Kim, B. O.; Jun, H. S.; Chang, H. N. Polymerization of aqueous lactic acid to prepare high molecular weight poly(lactic acid) by chain-extending with hexamethylene diisocyanate. Polym. Bull. 1995, 35, 415–421.

    Article  CAS  Google Scholar 

  21. Suwanda, D.; Balks, S. T. The reactive modification of polyethylene. I: The effect of low initiator concentrations on molecular properties. Polym. Eng. Sci. 1993, 33, 1585–1591.

    Article  CAS  Google Scholar 

  22. Cicero, J. A.; Dorgan, J. R.; Garrett, J.; Runt, J.; Lin, J. Effects of molecular architecture on two-step, melt-spun poly (lactic acid) fibers. J. Appl. Polym. Sci. 2002, 86, 2839–2846.

    Article  CAS  Google Scholar 

  23. Gotsis, A.; Zeevenhoven, B.; Hogt, A. The effect of long chain branching on the processability of polypropylene in thermoforming. Polym. Eng. Sci. 2004, 44, 973–982.

    Article  CAS  Google Scholar 

  24. Parvez, M.; Rahaman, M.; Soares, J.; Hussein, I.; Suleiman, M. Effect of long chain branching on the properties of polyethylene synthesized via metallocene catalysis. Polym. Sci., Ser. B 2014, 56, 707–720.

    Article  CAS  Google Scholar 

  25. Crosby, B. J.; Mangnus, M.; de Groot, W.; Daniels, R.; McLeish, T. C. B. Characterization of long chain branching: Dilution rheology of industrial polyethylenes. J. Rheol. 2002, 46, 401–426.

    Article  CAS  Google Scholar 

  26. Gotsis, A. D.; Zeevenhoven, B. L. F.; Tsenoglou, C. Effect of long branches on the rheology of polypropylene. J. Rheol. 2004, 48, 895–914.

    Article  CAS  Google Scholar 

  27. Sugimoto, M.; Suzuki, Y.; Hyun, K.; Ahn, K. H.; Ushioda, T.; Nishioka, A.; Taniguchi, T.; Koyama, K. Melt rheology of long-chain-branched polypropylenes. Rheol. Acta 2006, 46, 33–44.

    Article  Google Scholar 

  28. Nofar, M.; Zhu, W.; Park, C. B.; Randall, J. Crystallization kinetics of linear and long-chain-branched polylactide. Ind. Eng. Chem. Res. 2011, 50, 13789–13798.

    Article  CAS  Google Scholar 

  29. Tian, J.; Yu, W.; Zhou, C. Crystallization kinetics of linear and long-chain branched polypropylene. J. Macromol. Sci., Part B 2006, 45, 969–985.

    Article  CAS  Google Scholar 

  30. Zhai, W.; Yu, J.; Ma, W.; He, J. Influence of long-chain branching on the crystallization and melting behavior of polycarbonates in supercritical CO2. Macromolecules 2007, 40, 73–80.

    Article  CAS  Google Scholar 

  31. Zhang, Z.; Yu, F.; Zhang, H. Isothermal and non-isothermal crystallization studies of long chain branched polypropylene containing poly(ethylene-co-octene) under quiescent and shear conditions. Polymers 2017, 9, 236.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Krause, B.; Voigt, D.; Hußler, L.; Auhl, D.; Münstedt, H. Characterization of electron beam irradiated polypropylene: influence of irradiation temperature on molecular and rheological properties. J. Appl. Polym. Sci. 2006, 100, 2770–2780.

    Article  CAS  Google Scholar 

  33. Munstedt, H.; Gabriel, C.; Auhl, D. Long-chain branching and elongational properties of polyethylene and polypropylene melts. Polym. Prepr. 2003, 44, 27–28.

    Google Scholar 

  34. Münstedt, H.; Laun, H. M. Elongational properties and molecular structure of polyethylene melts. Rheol. Acta 1981, 20, 211–221.

    Article  Google Scholar 

  35. Tabatabaei, S. H.; Carreau, P. J.; Ajji, A. Rheological properties of blends of linear and long-chain branched polypropylenes. Polym. Eng. Sci. 2010, 50, 191–199.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ye Liu or Shi-Jun Zhang.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WL., Lyu, MF., Zhang, HY. et al. Preparation and Rheological Characterization of Long Chain Branching Polyglycolide. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3118-4

Keywords

Navigation