Skip to main content
Log in

Interplay between Microscopic Structures and Macroscopic Viscoelastic Properties of Polyampholyte Gels

  • Research Article
  • Special Issue: Charged Polymers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polyampholyte gels, which have hierarchical structures, exhibit excellent self-healing properties and have great promise for biomaterials and bioengineering. We investigated the relationship between microscopic structures and macroscopic viscoelastic properties of polyampholyte gels and found three factors influencing their viscoelastic properties, including the chemical crosslinking bonds, topological entanglements controlled by monomer concentration, and the ionic bonds. Ionic strength plays a major role on the strength of ionic bonds. A crossover point of elastic modulus and loss modulus was observed in the dynamic frequency sweeps at low monomer concentration or low chemical crosslinking density for gels with intermediate strength of ionic bonds. The solid-liquid transition signaled by the crossover point is a typical feature of dynamic associated gels, representing the dynamical association-dissociation of the ionic bonds and full relaxation of the topological entanglements in the gel network. While the crossover point disappears when the ionic bonds are too weak or too strong to form “permanent” bonds. Consistently, in the non-linear yielding measurement, gels with intermediate strength of the ionic bonds are ductile and yield at very large shear strain due to the self-healing properties and the dynamic association-dissociation of the ionic bonds. But the self-healing properties disappear when the ionic bond strength is too weak or too strong. Our work reveals the mechanism of how the dynamic association-dissociation of ionic bonds influences both the linear and non-linear viscoelastic properties of the polyampholyte gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. The author’s contact information: jiadi11@iccas.ac.cn.

References

  1. Yuk, H.; Varela, C. E.; Nabzdyk, C. S.; Mao, X.; Padera, R. F.; Roche, E. T.; Zhao, X. Dry double-sided tape for adhesion of wet tissues and devices. Nature 2019, 575, 169–174.

    Article  CAS  PubMed  Google Scholar 

  2. Hu, X.; Hao, L.; Wang, H.; Yang, X.; Zhang, G.; Wang, G.; Zhang, X. Hydrogel contact lens for extended delivery of ophthalmic drugs. Int. J. Polym. Sci. 2011, 2011, 1–9.

    Article  Google Scholar 

  3. Hamidi, M.; Azadi, A.; Rafiei, P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1638–1649.

    Article  CAS  PubMed  Google Scholar 

  4. Drury, J. L.; Mooney, D. J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, 4337–4351.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Doublenetwork hydrogels with extremely high mechanical strength. Adv. Mater. 2003, 15, 1155–1158.

    Article  CAS  Google Scholar 

  7. Jia, D.; Muthukumar, M. Interplay between microscopic and macroscopic properties of charged hydrogels. Macromolecules 2020, 53, 90–101.

    Article  CAS  Google Scholar 

  8. Jia, D.; Muthukumar M. Theory of charged gels: swelling, elasticity, and dynamics. Gels 2021, 7, 49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raia, N. R.; Jia, D.; Ghezzi, C. E.; Muthukumar, M.; Kaplan, D. L. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials 2020, 233, 119729.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, Y.; Xiao, L.; Zhou, J.; Liu, T.; Yan, Y.; Long, S.; Li, X. Strong tough polyampholyte hydrogels via the synergistic effect of ionic and metal-ligand bonds. Adv. Funct. Mater. 2021, 31, 2103917.

    Article  CAS  Google Scholar 

  11. Lee, H. H.; Kim, Y. W.; Woo, J.; Park, H.; Hur, K.; Suo, Z.; Sun, J. Y. Fast healing of ionic bonds in tough hydrogels under an acoustic excitation. Extreme Mech. Lett. 2019, 33, 100572.

    Article  Google Scholar 

  12. Zhang, Z.; Liu, J.; Li, S.; Gao, K.; Ganesan, V.; Zhang, L. Constructing sacrificial multiple networks to toughen elastomer. Macromolecules 2019, 52, 4154–4168.

    Article  CAS  Google Scholar 

  13. Yu, W. W.; Xu, W. Z.; Wei, Y. C.; Liao, S.; Luo, M. C. Mechanically robust elastomers enabled by a facile interfacial interactions-driven sacrificial network. Macromol. Rapid Commun. 2021, 42, 2100509.

    Article  CAS  Google Scholar 

  14. You, Y.; Yang, J.; Zheng, Q.; Wu, N.; Lv, Z.; Jiang, Z. Ultra-stretchable hydrogels with hierarchical hydrogen bonds. Sci. Rep. 2020, 10, 11727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Creton, C. 50th Anniversary perspective: networks and gels: soft but dynamic and tough. Macromolecules 2017, 50, 8297–8316.

    Article  CAS  Google Scholar 

  16. Wang, W.; Zhang, Y.; Liu, W. Bioinspired fabrication of high strength hydrogels from non-covalent interactions. Prog. Polym. Sci. 2017, 71, 1–25.

    Article  Google Scholar 

  17. Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat. Mater. 2013, 12, 932–937.

    Article  CAS  PubMed  Google Scholar 

  18. Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X.; Guo, H.; Gong, J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27, 2722–2727.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, F.; Cheng, L.; Yin, J.; Wu, Z. L.; Qian, J.; Fu, J.; Zheng, Q. 3D printing of ultratough polyion complex hydrogels. ACS Appl. Mater. Interfaces. 2016, 8, 31304–31310.

    Article  CAS  PubMed  Google Scholar 

  20. Hwang, J.; Cha, Y.; Ramos, L.; Zhu, T.; Buzoglu Kurnaz, L.; Tang, C. Tough antibacterial metallopolymer double-network hydrogels via dual polymerization. Chem. Mater. 2022, 34, 5663–5672.

    Article  CAS  Google Scholar 

  21. Guo, G.; Sun, J.; Wu, Y.; Wang, J.; Zou, L. Y.; Huang, J. J.; Ren, K. F.; Liu, C. M.; Wu, Z. L.; Zheng, Q.; Qian, J. Tough complex hydrogels transformed from highly swollen polyelectrolyte hydrogels based on Cu2+ coordination with anti-bacterial properties. Mater. Chem. B 2022, 10, 6414–6424.

    Article  CAS  Google Scholar 

  22. Fang, L.; Hu, J.; Zhang, C. W.; Wei, J.; Yu, H. C.; Zheng, S. Y.; Wu, Z. L.; Zheng, Q. Facile synthesis of tough metallosupramolecular hydrogels by using phosphates as temporary ligands of ferric ions to avoid inhibition of polymerization. J. Polym. Sci. 2022, 60, 2280–2288.

    Article  CAS  Google Scholar 

  23. Jia, D.; Muthukumar, M. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Phys. Rev. Lett. 2021, 126, 057802.

    Article  CAS  PubMed  Google Scholar 

  24. Zou, X.; Kui, X.; Zhang, R.; Zhang, Y.; Wang, X.; Wu, Q.; Chen, T.; Sun, P. Viscoelasticity and structures in chemically and physically dual-cross-linked hydrogels: insights from rheology and proton multiple-quantum nmr spectroscopy. Macromolecules 2017, 50, 9340–9352.

    Article  CAS  Google Scholar 

  25. Toleutay, G.; Su, E.; Kudaibergenov, S.; Okay, O. Highly stretchable and thermally healable polyampholyte hydrogels via hydrophobic modification. Colloid. Polym. Sci. 2020, 298, 273–284.

    Article  CAS  Google Scholar 

  26. Haag SL.; Bernards MT. Polyampholyte hydrogels in biomedical applications. Gels 2017, 3, 41.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Roy, C. K.; Guo, H. L.; Sun, T. L.; Ihsan, A. B.; Kurokawa, T.; Takahata, M.; Nonoyama, T.; Nakajima, T.; Gong, J. P. Self-adjustable adhesion of polyampholyte hydrogels. Adv. Mater. 2015, 27, 7344–7348.

    Article  CAS  PubMed  Google Scholar 

  28. Rao, P.; Sun, T. L.; Chen, L.; Takahashi, R.; Shinohara, G.; Guo, H.; King, D. R.; Kurokawa, T.; Gong, J. P. Tough hydrogels with fast, strong, and reversible underwater adhesion based on a multiscale design. Adv. Mater. 2018, 30, 1801884.

    Article  Google Scholar 

  29. Li, X.; Gong, J. P. Role of dynamic bonds on fatigue threshold of tough hydrogels. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2200678119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X.; Luo, F.; Sun, T. L.; Cui, K.; Watanabe, R.; Nakajima, T.; Gong, J. P. Effect of salt on dynamic mechanical behaviors of polyampholyte hydrogels. Macromolecules 2022, 56, 535–544.

    Article  Google Scholar 

  31. Cui, K.; Ye, Y. N.; Sun, T. L.; Yu, C.; Li, X.; Kurokawa, T.; Gong, J. P. Phase separation behavior in tough and self-healing polyampholyte hydrogels. Macromolecules 2020, 53, 5116–5126.

    Article  CAS  Google Scholar 

  32. Li, X.; Cui, K.; Kurokawa, T.; Ye, Y. N.; Sun, T. L.; Yu, C.; Creton, C.; Gong, J. P. Effect of mesoscale phase contrast on fatigue-delaying behavior of self-healing hydrogels. Sci. Adv. 2021, 7, eabe8210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, X.; Cui, K.; Sun, T. L.; Meng, L.; Yu, C.; Li, L.; Creton, C.; Kurokawa, T.; Gong, J. P. Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture. Proc. Natl. Acad. Sci. U. S. A. 2022, 117, 7606–7612.

    Article  Google Scholar 

  34. Tavares, L.; Noreña, C. P. Z. Characterization of rheological properties of complex coacervates composed by whey protein isolate, chitosan and garlic essential oil. J. Food Meas. Charact. 2022, 16, 295–306.

    Article  Google Scholar 

  35. Choi, J.; Rubner, M. F. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly. Macromolecules 2005, 38, 116–124.

    Article  CAS  Google Scholar 

  36. Flory P. J. Principles of Polymer Chemistry. Cornell University Press, 1953.

  37. Morozova, S.; Muthukumar, M. Elasticity at swelling equilibrium of ultrasoft polyelectrolyte gels: comparisons of theory and experiments. Macromolecules 2017, 50, 2456–2466.

    Article  CAS  Google Scholar 

  38. Shibayama, M.; Tanaka, T. Volume phase transition and related phenomena of polymer gels., in Responsive Gels: Volume Transitions I. Advances in Polymer Science, Vol. 109, Ed. by Dušek, K., Springer, Berlin, Heidelberg, 2005, p. 1–62.

    Google Scholar 

  39. Porcel, C. H.; Schlenoff, J. B.;. Compact polyelectrolyte complexes: “saloplastic” candidates for biomaterials. Biomacromolecules 2009, 10, 2968–2975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang, Z.; Chen, Q.; Colby, R. H. Dynamics of associative polymers. Soft Matter 2018, 14, 2961–2977.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22273114), the National Key R&D Program of China (No. 2023YFE0124500), the National Key R&D Program of China (No. 2023YFC2411203) and International Partnership Program of the Chinese Academy of Sciences (No. 027GJHZ2022061FN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Jia.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, YC., Yang, YM. & Jia, D. Interplay between Microscopic Structures and Macroscopic Viscoelastic Properties of Polyampholyte Gels. Chin J Polym Sci (2024). https://doi.org/10.1007/s10118-024-3116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10118-024-3116-6

Keywords

Navigation