Skip to main content
Log in

Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Multicomponent polymerizations (MCPs) are powerful tools to synthesize functional polymers with great structural diversity, low cost and high efficiency, which usually generate single polymer product. Herein, a robust one-pot diamines, CS2 and monoisocyanide-participated catalyst-free polymerization was developed at room temperature to produce polythiourea and thioformamide simultaneously in equal equivalent, which was featured with cheap monomers, simple operation and mild condition, affording various polythioureas with high Mws of up to 47500 g/mol in high yields of up to 98%. Polythioureas with varied chain composition and sequence-controlled structure could be synthesized in 62 g-scale from copolymerization or multicomponent tandem polymerization, enabling facile tuning of thermal property, crystallinity, mechanical property, and fluorescence. The abundant irregular hydrogen bonds endowed the polythioureas excellent glassy state self-healing property at room temperature or below 0 °C. This polymerization provided an efficient and economic approach to access functional polythioureas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meier, M. A. R.; Hu, R.; Tang, B. Z. Multicomponent reactions in polymer science. Macromol. Rapid Commun. 2021, 42, 2100104.

    Article  CAS  Google Scholar 

  2. Kreye, O.; Tóth, T.; Meier, M. A. R. Introducing multicomponent reactions to polymer science: passerini reactions of renewable monomers. J. Am. Chem. Soc. 2011, 133, 1790–1792.

    Article  CAS  PubMed  Google Scholar 

  3. Deng, X. X.; Li, L.; Li, Z. L.; Lv, A.; Du, F. S.; Li, Z. C. Sequence regulated poly(ester-amide)s based on Passerini reaction. ACS Macro Lett. 2012, 1, 1300–1303.

    Article  CAS  PubMed  Google Scholar 

  4. Leitch, D. C.; Kayser, L. V.; Han, Z. Y.; Siamaki, A. R.; Keyzer, E. N.; Gefen, A.; Arndtsen, B. A. A Palladium-catalysed multicomponent coupling approach to conjugated poly(1,3-dipoles) and polyheterocycles. Nat. Commun. 2015, 6, 7411.

    Article  CAS  PubMed  Google Scholar 

  5. Xue, H.; Zhao, Y.; Wu, H.; Wang, Z.; Yang, B.; Wei, Y.; Wang, Z.; Tao, L. Multicomponent combinatorial polymerization via the biginelli reaction. J. Am. Chem. Soc. 2016, 138, 8690–8693.

    Article  CAS  PubMed  Google Scholar 

  6. Stiernet, P.; Debuigne, A. Imine-based multicomponent polymerization: concepts, structural diversity and applications. Prog. Polym. Sci. 2022, 128, 101528.

    Article  CAS  Google Scholar 

  7. Kleine, T. S.; Glass, R. S.; Lichtenberger, D. L.; Mackay, M. E.; Char, K.; Norwood, R. A.; Pyun, J. 100th Anniversary of macromolecular science viewpoint: high refractive index polymers from elemental sulfur for infrared thermal imaging and optics. ACS Macro Lett. 2020, 9, 245–259.

    Article  CAS  PubMed  Google Scholar 

  8. Scheiger, J. M.; Direksilp, C.; Falkenstein, P.; Welle, A.; Koenig, M.; Heissler, S.; Matysik, J.; Levkin, P. A.; Theato, P. Inverse vulcanization of styrylethyltrimethoxysilane-coated surfaces, particles, and crosslinked materials. Angew. Chem. Int. Ed. 2020, 59, 18639–18645.

    Article  CAS  Google Scholar 

  9. Xin, Y.; Peng, H.; Xu, J.; Zhang, J. Ultrauniform embedded liquid metal in sulfur polymers for recyclable, conductive, and self-healable materials. Adv. Funct. Mater. 2019, 29, 1808989.

    Article  Google Scholar 

  10. Rech, J. J.; Yan, L.; Peng, Z.; Dai, S.; Zhan, X.; Ade, H.; You, W. Utilizing difluorinated thiophene units to improve the performance of polymer solar cells. Macromolecules 2019, 52, 6523–6532.

    Article  CAS  Google Scholar 

  11. Feng, Y.; Hasegawa, Y.; Suga, T.; Nishide, H.; Yang, L.; Chen, G.; Li, S. Tuning conformational H-bonding arrays in aromatic/alicyclic polythiourea toward high energy-storable dielectric material. Macromolecules 2019, 52, 8781–8787.

    Article  CAS  Google Scholar 

  12. Kawai, Y.; Kanbara, T.; Hasegawa, K. Preparation of Polythioamides from dialdehydes and 4,4-trimethylenedipiperidine with sulfur by the Willgerodt-Kindler reaction. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1737–1740.

    Article  CAS  Google Scholar 

  13. Li, W.; Wu, X.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Z. Catalyst-free, atom-economic, multicomponent polymerizations of aromatic diynes, elemental sulfur, and aliphatic diamines toward luminescent polythioamides. Macromolecules 2015, 48, 7747–7754.

    Article  CAS  Google Scholar 

  14. Cao, W.; Dai, F.; Hu, R.; Tang, B. Z. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines. J. Am. Chem. Soc. 2020, 142, 978–986.

    Article  CAS  PubMed  Google Scholar 

  15. Tian, T.; Hu, R.; Tang, B. Z. Room temperature one-step conversion from elemental sulfur to functional polythioureas through catalyst-free multicomponent polymerizations. J. Am. Chem. Soc. 2018, 140, 6156–6163.

    Article  CAS  PubMed  Google Scholar 

  16. Espeel, P.; Goethals, F.; Du Prez, F. E. One-pot multistep reactions based on thiolactones: extending the realm of thiol-ene chemistry in polymer synthesis. J. Am. Chem. Soc. 2011, 133, 1678–1681.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, L.; Zhang, Z.; Cheng, B.; You, Y.; Wu, D.; Hong, C. Two tandem multicomponent reactions for the synthesis of sequence-defined polymers. Sci. China Chem. 2015, 58, 1734–1740.

    Article  CAS  Google Scholar 

  18. Lee, I. H.; Kim, H.; Choi, T. L. Cu-catalyzed multicomponent polymerization to synthesize a library of poly(N-sulfonylamidines). J. Am. Chem. Soc. 2013, 135, 3760–3763.

    Article  CAS  PubMed  Google Scholar 

  19. Huang, Y.; Xu, L.; Hu, R.; Tang, B. Z. Cu(I)-catalyzed heterogeneous multicomponent polymerizations of alkynes, sulfonyl azides, and NH4Cl. Macromolecules 2020, 53, 10366–10374.

    Article  CAS  Google Scholar 

  20. Zhang, J.; Zang, Q.; Yang, F.; Zhang, H.; Sun, J. Z.; Tang, B. Z. Sulfur conversion to multifunctional poly(O-thiocarbamate)s through multicomponent polymerizations of sulfur, diols, and diisocyanides. J. Am. Chem. Soc. 2021, 143, 3944–3950.

    Article  CAS  PubMed  Google Scholar 

  21. Ochiai, B.; Ogihara, T.; Mashiko, M.; Endo, T. Synthesis of rare-metal absorbing polymer by three-component polyaddition through combination of chemo-selective nucleophilic and radical additions. J. Am. Chem. Soc. 2009, 131, 1636–1637.

    Article  CAS  PubMed  Google Scholar 

  22. Yanagisawa, Y.; Nan, Y.; Okuro, K.; Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 2018, 359, 72–76.

    Article  CAS  PubMed  Google Scholar 

  23. Feng, H.; Zheng, N.; Peng, W.; Ni, C.; Song, H.; Zhao, Q.; Xie, T. Upcycling of dynamic thiourea thermoset polymers by intrinsic chemical strengthening. Nat. Commun. 2022, 13, 397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujisawa, Y.; Asano, A.; Itoh, Y.; Aida, T. Mechanically robust, self-healable polymers usable under high humidity: humidity-tolerant noncovalent cross-linking strategy. J. Am. Chem. Soc. 2021, 143, 15279–15285.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y. M.; Zhang, Z. P.; Rong, M. Z.; Zhang, M. Q. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat. Commun. 2022, 13, 2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, S.; Li, W.; Lin, M.; Burlingame, Q.; Chen, Q.; Payzant, A.; Xiao, K.; Zhang, Q. M. Aromatic polythiourea dielectrics with ultrahigh breakdown field strength, low dielectric loss, and high electric energy density. Adv. Mater. 2013, 25, 1734–1738.

    Article  CAS  PubMed  Google Scholar 

  27. Sharma, V.; Wang, C.; Lorenzini, R. G.; Ma, R.; Zhu, Q.; Sinkovits, D. W.; Pilania, G.; Oganov, A. R.; Kumar, S.; Sotzing, G. A.; Boggs, S. A.; Ramprasad, R. Rational design of all organic polymer dielectrics. Nat. Commun. 2014, 5, 4845.

    Article  CAS  PubMed  Google Scholar 

  28. Ma, R.; Sharma, V.; Baldwin, A. F.; Tefferi, M.; Offenbach, I.; Cakmak, M.; Weiss, R.; Cao, Y.; Ramprasad, R.; Sotzing, G. A. Rational design and synthesis of polythioureas as capacitor dielectrics. J. Mater. Chem. A 2015, 3, 14845–14852.

    Article  CAS  Google Scholar 

  29. Yamazaki, N.; Higashi, F.; Iguchi, T. Polyureas and polythioureas from carbon dioxide and disulfide with diamines under mild conditions. J. Polym. Sci., Polym. Lett. Ed. 1974, 12, 517–521.

    Article  CAS  Google Scholar 

  30. Wu, S.; Luo, M.; Darensbourg, D. J.; Zuo, X. Catalyst-free construction of versatile and functional CS2-based polythioureas: characteristics from self-healing to heavy metal absorption. Macromolecules 2019, 52, 8596–8603.

    Article  CAS  Google Scholar 

  31. Banihashemi, A.; Hazarkhani, H.; Abdolmaleki, A. Efficient and rapid synthesis of polyureas and polythioureas from the reaction of urea and thiourea with diamines under microwave irradiation. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 2106–2111.

    Article  CAS  Google Scholar 

  32. Diebler, J.; Komber, H.; Häußler, L.; Lederer, A.; Werner, T. Alkoxide-initiated regioselective coupling of carbon disulfide and terminal epoxides for the synthesis of strongly alternating copolymers. Macromolecules 2016, 49, 4723–4731.

    Article  CAS  Google Scholar 

  33. Nakano, K.; Tatsumi, G.; Nozaki, K. Synthesis of sulfur-rich polymers: copolymerization of episulfide with carbon disulfide by using [PPN]Cl/(salph)Cr(III)Cl system. J. Am. Chem. Soc. 2007, 129, 15116–15117.

    Article  CAS  PubMed  Google Scholar 

  34. Silvano, S.; Carrozza, C. F.; de Angelis, A. R.; Tritto, I.; Boggioni, L.; Losio, S. Synthesis of sulfur-rich polymers: copolymerization of cyclohexene sulfide and carbon disulfide using chromium complexes. Macromolecules 2020, 53, 8837–8846.

    Article  CAS  Google Scholar 

  35. Zhang, C. J.; Zhang, X. H. Chemoselective coupling of CS2 and epoxides for producing poly(thioether)s and COS via oxygen/sulfur atom exchange. Macromolecules 2020, 53, 233–239.

    Article  CAS  Google Scholar 

  36. Plajer, A. J.; Williams, C. K. Heterocycle/heteroallene ring-opening copolymerization: selective catalysis delivering alternating copolymers. Angew. Chem. Int. Ed. 2022, 61, e202104495.

    Article  CAS  Google Scholar 

  37. Nagai, D.; Imazeki, T.; Morinaga, H.; Nakabayashi, H. Synthesis of a rare-metal adsorbing polymer by three-component polyaddition of diamines, carbon disulfide, and diacrylates in an aqueous/organic biphasic medium. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 5968–5973.

    Article  CAS  Google Scholar 

  38. Halimehjani, A. Z.; Mohtasham, R.; Shockravi, A.; Martens, J. Multicomponent synthesis of dithiocarbamates starting from vinyl sulfones/sulfoxides and their use in polymerization reactions. RSC Adv. 2016, 6, 75223–75226.

    Article  CAS  Google Scholar 

  39. Zhao, C.; Meng, X.; Lu, R.; Xie, H.; Liu, J. Sulfur-containing polymers from terpolymerization of active methylene compounds, carbon disulfide, and dihalohydrocarbons: synthesis and properties. Polym. Chem. 2019, 10, 5333–5338.

    Article  CAS  Google Scholar 

  40. DeMartino, A. W.; Zigler, D. F.; Fukuto, J. M.; Ford, P. C. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic. Chem. Soc. Rev. 2017, 46, 21–39.

    Article  CAS  PubMed  Google Scholar 

  41. Murai, T.; Hori, F.; Maruyama, T. Intramolecular cyclization of in situ generated adducts formed between thioamide dianions and thioformamides leading to generation of 5-amino-2-thiazolines and 5-aminothiazoles, and their fluorescence properties. Org. Lett. 2011, 13, 1718–1721.

    Article  CAS  PubMed  Google Scholar 

  42. Scott, M. K.; Jacoby, H. I.; Mills, J. E.; Bonfilio, A. C.; Rasmussen, C. R. 4-(Diphenylmethyl)-1-(iminomethyl)piperidines as gastric antisecretory agents. J. Med. Chem. 1983, 26, 535–538.

    Article  CAS  PubMed  Google Scholar 

  43. de la Vega-Hernández, K.; Senatore, R.; Miele, M.; Urban, E.; Holzer, W.; Pace, V. Chemoselective reduction of isothiocyanates to thioformamides mediated by the schwartz reagent. Org. Biomol. Chem. 2019, 17, 1970–1978.

    Article  PubMed  Google Scholar 

  44. Ghorbani-Choghamarani, A.; Taherinia, Z. Fe3O4@GlcA@Cu-MOF: a magnetic metal-organic framework as a recoverable catalyst for the hydration of nitriles and reduction of isothiocyanates, isocyanates, and isocyanides. ACS Comb. Sci. 2020, 22, 902–909.

    Article  CAS  PubMed  Google Scholar 

  45. Anary-Abbasinejad, M.; Karimi, N.; Mehrabi, H.; Ranjbar-Karimi, R. A simple route for the synthesis of symmetrical thiourea derivatives and amidinium cations by reaction between isocyanides, amines and carbon disulfide. J. Sulfur Chem. 2012, 33, 653–659.

    Article  CAS  Google Scholar 

  46. Abás, S.; Moens, U.; Escolano, C. Facile microwave-assisted synthesis of thioformamides from isocyanides and carbon disulfide. Tetrahed. Lett. 2017, 58, 2768–2770.

    Article  Google Scholar 

  47. Patil, P.; Ahmadian-Moghaddam, M.; Dömling, A. Isocyanide 2.0. Green Chem. 2020, 22, 6902–6911.

    Article  CAS  Google Scholar 

  48. Humeres, E.; Debacher, N. A.; Sierra, M. M. d. S.; Franco, J. D.; Schutz, A. Mechanisms of acid decomposition of dithiocarbamates. 1. Alkyl dithiocarbamates. J. Org. Chem. 1998, 63, 1598–1603.

    Article  CAS  Google Scholar 

  49. Zhang, J.; Liu, Z.; Yin, Z.; Yang, X.; Ma, Y.; Szostak, R.; Szostak, M. Preference of cis-thioamide structure in N-thioacyl-N-methylanilines. Org. Lett. 2020, 22, 9500–9505.

    Article  CAS  PubMed  Google Scholar 

  50. Huang, Z.; Zhao, J.; Wang, Z.; Meng, F.; Ding, K.; Pan, X.; Zhou, N.; Li, X.; Zhang, Z.; Zhu, X. Combining orthogonal chain-end deprotections and thiol-maleimide Michael coupling: engineering discrete oligomers by an iterative growth strategy. Angew. Chem. Int. Ed. 2017, 56, 13612–13617.

    Article  CAS  Google Scholar 

  51. De Franceschi, I.; Mertens, C.; Badi, N.; Du Prez, F. Uniform soluble support for the large-scale synthesis of sequence-defined macromolecules. Polym. Chem. 2022, 13, 5616–5624.

    Article  CAS  Google Scholar 

  52. Liao, P.; Huang, J.; Yan, Y.; Tang, B. Z. Clusterization-triggered emission (CTE): one for all, all for one. Mater. Chem. Front 2021, 5, 6693–6717.

    Article  CAS  Google Scholar 

  53. Wang, Q.; Dou, X.; Chen, X.; Zhao, Z.; Wang, S.; Wang, Y.; Sui, K.; Tan, Y.; Gong, Y.; Zhang, Y.; Yuan, W. Z. Reevaluating protein photoluminescence: remarkable visible luminescence upon concentration and insight into the emission mechanism. Angew. Chem. Int. Ed. 2019, 58, 12667–12673.

    Article  CAS  Google Scholar 

  54. Han, B.; Yan, Q.; Xin, Z.; Liu, Q.; Li, D.; Wang, J.; He, G. Color-tunable and bright nonconjugated fluorescent polymer dots and fast photodegradation of dyes under visible light. Aggregate 2021, e147.

  55. Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624.

    Article  CAS  PubMed  Google Scholar 

  56. Wang, X.; Zhan, S.; Lu, Z.; Li, J.; Yang, X.; Qiao, Y.; Men, Y.; Sun, J. Healable, recyclable, and mechanically tough polyurethane elastomers with exceptional damage tolerance. Adv. Mater. 2020, 32, 2005759.

    Article  CAS  Google Scholar 

  57. Ji, X.; Li, Z.; Hu, Y.; Xie, H.; Wu, W.; Song, F.; Liu, H.; Wang, J.; Jiang, M.; Lam Jacky, W. Y.; Tang, B. Z. Bioinspired hydrogels with muscle-like structure for AIEgen-guided selective self-healing. CCS Chem. 2020, 3, 1146–1156.

    Article  Google Scholar 

  58. Wang, S.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

    Article  CAS  Google Scholar 

  59. Wang, H.; Liu, H.; Cao, Z.; Li, W.; Huang, X.; Zhu, Y.; Ling, F.; Xu, H.; Wu, Q.; Peng, Y.; Yang, B.; Zhang, R.; Kessler, O.; Huang, G.; Wu, J. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 11299–11305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu, J.; Chen, J.; Zhang, Y.; Liu, T.; Fu, J. A Fast room-temperature self-healing glassy polyurethane. Angew. Chem. Int. Ed. 2021, 60, 7947–7955.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 52173005, 21788102 and 21822102), the Ministry of Science and Technology of China (No. 2021YFA1501600), the Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (No. 2019B030301003) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Zhong Tang.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

10118_2023_3019_MOESM1_ESM.pdf

Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Ye, F., Huo, JL. et al. Diamines, CS2 and Monoisocyanide-participated Polymerizations for Large-scale Synthesis of Polythioureas and Thioformamide. Chin J Polym Sci 41, 1563–1576 (2023). https://doi.org/10.1007/s10118-023-3019-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3019-y

Keywords

Navigation