Skip to main content
Log in

Remarkably Improved Gas Separation Performance of Polyimides by Forming “Bent and Battered” Main Chain Using Paracyclophane as Building Block

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The design and development of highly permeable, selective and stable polymer membranes are great challenges in the gas separation industry. Herein, we constructed two intrinsic microporous polyimides (6FPCA and 6FMCA) derived from two isometric diamines (PCA and MCA), which were synthesized by palladium catalyzed C—N coupling reaction. The PCA and MCA diamines contain a hollow beaded structure of 2,2′-paracyclophane as a building block with a specified window size of 3.09 Å. The chemical structures of monomers, polyimides were confirmed by NMR, FTIR, and elementary analysis. 6FPCA and 6FMCA exhibit good solubility, excellent thermal stability, and mechanical properties. 6FPCA exhibits much larger microporosity (434 versus 120 m2·g−1), FFV (0.22 versus 0.15), d-spacing (6.9 versus 5.9 Å), and over 10 times higher permeability with a very little decrease in selectivity than the corresponding polyimide (6FpA) with a plane structure, which remarkably increased their separation performance from far below the 2008 Robeson Upper bounds to reach these limitations for O2/N2 and CO2/CH4. Additionally, the 6FPCA also demonstrates good plasticization resistance, moderate aging properties, and high CO2/CH4 mixed-gas separation performance. These results indicate that paracyclophane subunit can be successfully incorporated into polymers to enhance their ultra-microporosity and separation properties, which open a new avenue for developing high performance gas separation membranes with topological ultra-micropores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

    Article  PubMed  Google Scholar 

  2. Galizia, M.; Chi, W. S.; Smith, Z. P.; Merkel, T. C.; Baker, R. W.; Freeman, B. D. 50th Anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 2017, 50, 7809–7843.

    Article  CAS  Google Scholar 

  3. Sandru, M.; Sandru, E. M.; Ingram, W. F.; Deng, J.; Stenstad, P. M.; Deng, L.; Spontak, R. J. An integrated materials approach to ultrapermeable and ultraselective CO2 polymer membranes. Science 2022, 376, 90–94.

    Article  CAS  PubMed  Google Scholar 

  4. Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

    Article  PubMed  Google Scholar 

  5. Zhu, B., He, S., Yang, Y. et al. Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering. Nat. Commun. 2013, 14, 167.

    Google Scholar 

  6. Zhu, B.; He, S.; Wu, Y.; Li, S.; Shao, L. One-step synthesis of structurally stable CO2-philic membranes with ultra-high PEO loading for enhanced carbon capture. Engineering 2022.

  7. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.

    Article  CAS  Google Scholar 

  8. Swaidan, R.; Ghanem, B.; Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 2015, 4, 947–951.

    Article  CAS  PubMed  Google Scholar 

  9. Freeman, B. D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 1999, 32, 375–380.

    Article  CAS  Google Scholar 

  10. Comesaña-Gándara, B.; Chen, J.; Bezzu, C. G.; Carta, M.; Rose, I.; Ferrari, M. C.; Esposito, E.; Fuoco, A.; Jansen, J. C.; McKeown, N. B. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ. Sci. 2019, 12, 2733–2740.

    Article  Google Scholar 

  11. Du, N.; Park, H. B.; Robertson, G. P.; Dal-Cin, M. M.; Visser, T.; Scoles, L.; Guiver, M. D. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 2011, 10, 372–375.

    Article  CAS  PubMed  Google Scholar 

  12. Yin, Y.; Guiver, M. D. Microporous polymers: ultrapermeable membranes. Nat. Mater. 2017, 16, 880–881.

    Article  CAS  PubMed  Google Scholar 

  13. Guiver, M. D.; Lee, Y. M. Polymer rigidity improves microporous membranes. Science 2013, 339, 284–285.

    Article  CAS  PubMed  Google Scholar 

  14. Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun 2004, 230–231.

  15. Budd, P. M.; McKeown, N. B.; Fritsch, D. Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 2005, 15, 1977–1986.

    Article  CAS  Google Scholar 

  16. Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; McKeown, N. B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269.

    Article  CAS  Google Scholar 

  17. Li, P.; Chung, T. S.; Paul, D. R. Gas sorption and permeation in PIM-1. J. Membr. Sci. 2013, 432, 50–57.

    Article  CAS  Google Scholar 

  18. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. High-performance membranes from polyimides with intrinsic microporosity. Adv. Mater. 2008, 20, 2766–2771.

    Article  CAS  PubMed  Google Scholar 

  19. Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24, 5930–5933.

    Article  CAS  PubMed  Google Scholar 

  20. Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307.

    Article  CAS  PubMed  Google Scholar 

  21. Carta, M.; Croad, M.; Malpass-Evans, R.; Jansen, J. C.; Bernardo, P.; Clarizia, G.; Friess, K.; Lanc, M.; McKeown, N. B. Triptycene induced enhancement of membrane gas selectivity for microporous Troger’s base polymers. Adv. Mater. 2014, 26, 3526–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rose, I.; Bezzu, C. G.; Carta, M.; Comesana-Gandara, B.; Lasseuguette, E.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Fuoco, A.; Jansen, J. C.; Hart, K. E.; Liyana-Arachchi, T. P.; Colina, C. M.; McKeown, N. B. Polymer ultrapermeability from the inefficient packing of 2D chains. Nat. Mater. 2017, 16, 932–937.

    Article  CAS  PubMed  Google Scholar 

  23. Lai, H. W. H.; Benedetti, F. M.; Ahn, J. M.; Robinson, A. M.; Wang, Y.; Pinnau, I.; Smith, Z. P.; Xia, Y. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 2022, 375, 1390–1392.

    Article  CAS  PubMed  Google Scholar 

  24. Budd, P. M.; Elabas, E. S.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E.; Wang, D. Solution-processed, organophilic membrane derived from a polymer of intrinsic microporosity. Adv. Mater. 2004, 16, 456–459.

    Article  CAS  Google Scholar 

  25. Yi, S.; Ghanem, B.; Liu, Y.; Pinnau, I.; Koros, W. J. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Sci. Adv. 2019, 5, eaaw5459.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma, X.; Lai, H. W. H.; Wang, Y.; Alhazmi, A.; Xia, Y.; Pinnau, I. Facile synthesis and study of microporous catalytic arene-norbornene annulation-Tröger’s base ladder polymers for membrane air separation. ACS Macro Lett. 2020, 9, 680–685.

    Article  CAS  PubMed  Google Scholar 

  27. Ma, X. H.; Abdulhamid, M. A.; Pinnau, I. Design and synthesis of polyimides based on carbocyclic pseudo-Troger’s base-derived dianhydrides for membrane gas separation applications. Macromolecules 2017, 50, 5850–5857.

    Article  CAS  Google Scholar 

  28. Ma, X. H.; Ghanem, B.; Salinas, O.; Litwiller, E.; Pinnau, I. Synthesis and effect of physical aging on gas transport properties of a microporous polyimide derived from a novel spirobifluorene-based dianhydride. ACS Macro Lett. 2015, 4, 231–235.

    Article  CAS  PubMed  Google Scholar 

  29. Ma, X. H.; Salinas, O.; Litwiller, E.; Pinnau, I. Novel spirobifluorene-and dibromospirobifluorene-based polyimides of intrinsic microporosity for gas separation applications. Macromolecules 2013, 46, 9618–9624.

    Article  CAS  Google Scholar 

  30. Ghanem, B. S.; Swaidan, R.; Litwiller, E.; Pinnau, I. Ultra-Microporous triptycene-based polyimide membranes for highperformance gas separation. Adv. Mater. 2014, 26, 3688–3692.

    Article  CAS  PubMed  Google Scholar 

  31. Ghanem, B. S.; Swaidan, R.; Ma, X.; Litwiller, E.; Pinnau, I. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv. Mater. 2014, 26, 6696–6700.

    Article  CAS  PubMed  Google Scholar 

  32. Bezzu, C. G.; Fuoco, A.; Esposito, E.; Monteleone, M.; Longo, M.; Jansen, J. C.; Nichol, G. S.; McKeown, N. B. Ultrapermeable polymers of intrinsic microporosity containing spirocyclic units with fused triptycenes. Adv. Funct. Mater. 2021, 31, 2104474.

    Article  CAS  Google Scholar 

  33. Williams, R.; Burt, L. A.; Esposito, E.; Jansen, J. C.; Tocci, E.; Rizzuto, C.; Lanc, M.; Carta, M.; McKeown, N. B. A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Troger’s base polymerization. J. Mater. Chem. A 2018, 6, 5661–5667.

    Article  CAS  Google Scholar 

  34. Rose, I.; Carta, M.; Malpass-Evans, R.; Ferrari, M. C.; Bernardo, P.; Clarizia, G.; Jansen, J. C.; McKeown, N. B. Highly permeable benzotriptycene-based polymer of intrinsic microporosity. ACS Macro Lett. 2015, 4, 912–915.

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J.; Xiao, Y.; Liao, K. S.; Chung, T. S. Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin. J. Membr. Sci. 2017, 523, 92–102.

    Article  CAS  Google Scholar 

  36. Liang, C. Z.; Liu, J. T.; Lai, J. Y.; Chung, T. S. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation. J. Membr. Sci. 2018, 563, 93–106.

    Article  CAS  Google Scholar 

  37. Villalobos, L. F.; Huang, T.; Peinemann, K. V. Cyclodextrin films with fast solvent transport and shape-selective permeability. Adv. Mater. 2017, 29, 1606641.

    Article  Google Scholar 

  38. Liu, J.; Hua, D.; Zhang, Y.; Japip, S.; Chung, T. S. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Adv. Mater. 2018, 30, 1705933.

    Article  Google Scholar 

  39. Huang, T.; Puspasari, T.; Nunes, S. P.; Peinemann, K. V. Ultrathin 2D-layered cyclodextrin membranes for high-performance organic solvent nanofiltration. Adv. Funct. Mater. 2019, 30, 1906797.

    Article  Google Scholar 

  40. Huang, T.; Moosa, B. A.; Hoang, P.; Liu, J.; Chisca, S.; Zhang, G.; AlYami, M.; Khashab, N. M.; Nunes, S. P. Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration. Nat. Commun. 2020, 11, 5882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, B.; Japip, S.; Chung, T. S. Molecularly tunable thin-film nanocomposite membranes with enhanced molecular sieving for organic solvent forward osmosis. Nat. Commun. 2020, 11, 1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, Z.; Dong, R.; Evans, A. M.; Biere, N.; Ebrahim, M. A.; Li, S.; Anselmetti, D.; Dichtel, W. R.; Livingston, A. G. Aligned macrocycle pores in ultrathin films for accurate molecular sieving. Nature 2022, 609, 58–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cram, D. J.; Steinberg, H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J. Am. Chem. Soc. 1951, 73, 5691–5704.

    Article  CAS  Google Scholar 

  44. Hassan, Z.; Spuling, E.; Knoll, D. M.; Brase, S. Regioselective functionalization of [2.2]paracyclophanes: recent synthetic progress and perspectives. Angew. Chem. Int. Ed. 2020, 59, 2156–2170.

    Article  CAS  Google Scholar 

  45. Hassan, Z.; Varadharajan, D.; Zippel, C.; Begum, S.; Lahann, J.; Brase, S. Design strategies for structurally controlled polymer surfaces via cyclophane-based CVD polymerization and post-CVD fabrication. Adv. Mater. 2022, 34, e2201761.

    Article  PubMed  Google Scholar 

  46. Kumar, S. V.; Guiry, P. J. Zinc-catalyzed enantioselective [3+2] cycloaddition of azomethine ylides using planar chiral [2.2]paracyclophane-imidazoline N,O-ligands. Angew. Chem. Int. Ed. 2022, 61, e202205516.

    Article  CAS  Google Scholar 

  47. Liao, X. J.; Pu, D.; Yuan, L.; Tong, J.; Xing, S.; Tu, Z. L.; Zuo, J. L.; Zheng, W. H.; Zheng, Y. X. Planar chiral multiple resonance thermally activated delayed fluorescence materials for efficient circularly polarized electroluminescence. Angew. Chem. Int. Ed. 2023, 62, e202217045.

    Article  CAS  Google Scholar 

  48. Pye, D. G.; Hoehn, H. H.; Panar, M. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. J. Appl. Polym. Sci. 1976, 20, 1921–1931.

    Article  CAS  Google Scholar 

  49. Ye, C.; Luo, C.; Ji, W.; Weng, Y.; Li, J.; Yi, S.; Ma, X. Significantly enhanced gas separation properties of microporous membranes by precisely tailoring their ultra-microporosity through bromination/debromination. Chem. Eng. J. 2023, 451, 138513.

    Article  CAS  Google Scholar 

  50. Yeh, Y. L.; Gorham, W. F. Preparation and reactions of some [2.2] paracyclophane derivatives. J. Org. Chem. 2002, 34, 2366–2370.

    Article  Google Scholar 

  51. Ruiz-Castillo, P.; Buchwald, S. L. Applications of palladium-catalyzed C—N cross-coupling reactions. Chem. Rev. 2016, 116, 12564–12649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Snyder, R. W.; Thomson, B.; Bartges, B.; Czerniawski, D.; Painter, P. C. FTIR studies of polyimides: thermal curing. Macromolecules 2002, 22, 4166–4172.

    Article  Google Scholar 

  53. Mi, Y.; Stern, S. A.; Trohalaki, S. Dependence of the gas-permeability of some polyimide isomers on their intrasegmental mobility. J. Membr. Sci. 1993, 77, 41–48.

    Article  CAS  Google Scholar 

  54. McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675–683.

    Article  CAS  PubMed  Google Scholar 

  55. Alghunaimi, F.; Ghanem, B.; Alaslai, N.; Swaidan, R.; Litwiller, E.; Pinnau, I. Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides. J. Membr. Sci. 2015, 490, 321–327.

    Article  CAS  Google Scholar 

  56. Li, K.; Zhu, Z.; Dong, H.; Li, Q.; Ji, W.; Li, J.; Cheng, B.; Ma, X. Bottom up approach to study the gas separation properties of PIM-PIs and its derived CMSMs by isomer monomers. J. Membr. Sci. 2021, 635, 119519.

    Article  CAS  Google Scholar 

  57. Ma, X. H.; Swaidan, R.; Belmabkhout, Y.; Zhu, Y. H.; Litwiller, E.; Jouiad, M.; Pinnau, I.; Han, Y. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity. Macromolecules 2012, 45, 3841–3849.

    Article  CAS  Google Scholar 

  58. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451.

    Article  CAS  Google Scholar 

  59. Nuhnen, A.; Klopotowski, M.; Tanh Jeazet, H. B.; Sorribas, S.; Zornoza, B.; Tellez, C.; Coronas, J.; Janiak, C. High performance MIL-101(Cr)@6FDA-mPD and MOF-199@6FDA-mPD mixed-matrix membranes for CO2/CH4 separation. Dalton Trans. 2020, 49, 1822–1829.

    Article  CAS  PubMed  Google Scholar 

  60. Alaslai, N.; Ghanem, B.; Alghunaimi, F.; Litwiller, E.; Pinnau, I. Pure-and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation. J. Membr. Sci. 2016, 505, 100–107.

    Article  CAS  Google Scholar 

  61. Ma, X. H.; Salinas, O.; Litwiller, E.; Pinnau, I. Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides. Polym. Chem. 2014, 5, 6914–6922.

    Article  CAS  Google Scholar 

  62. Swaidan, R.; Ghanem, B.; Litwiller, E.; Pinnau, I. Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides. J. Membr. Sci. 2015, 475, 571–581.

    Article  CAS  Google Scholar 

  63. Jung, C. H.; Lee, Y. M. Gas permeation properties of hydroxyl-group containing polyimide membranes. Macromol. Res. 2008, 16, 555–560.

    Article  CAS  Google Scholar 

  64. Coleman, M. R.; Koros, W. J. Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications. J. Membr. Sci. 1990, 50, 285–297.

    Article  CAS  Google Scholar 

  65. Alaslai, N.; Ma, X.; Ghanem, B.; Wang, Y.; Alghunaimi, F.; Pinnau, I. Synthesis and characterization of a novel microporous dihydroxyl-functionalized triptycene-diamine-based polyimide for natural gas membrane separation. Macromol. Rapid Commun. 2017, 38, 1700303.

    Article  Google Scholar 

  66. Low, Z. X.; Budd, P. M.; McKeown, N. B.; Patterson, D. A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev. 2018, 118, 5871–5911.

    Article  CAS  PubMed  Google Scholar 

  67. Lau, C. H.; Mulet, X.; Konstas, K.; Doherty, C. M.; Sani, M. A.; Separovic, F.; Hill, M. R.; Wood, C. D. Hypercrosslinked additives for ageless gas-separation membranes. Angew. Chem. Int. Ed. 2016, 55, 1998–2001.

    Article  CAS  Google Scholar 

  68. Swaidan, R.; Ghanem, B.; Litwiller, E.; Pinnau, I. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 2015, 48, 6553–6561.

    Article  CAS  Google Scholar 

  69. Costello, L. M.; Koros, W. J. Effect of structure on the temperature dependence of gas transport and sorption in a series of polycarbonates. J. Polym. Sci., Part B: Polym. Phys. 1994, 32, 701–713.

    Article  CAS  Google Scholar 

  70. Muruganandam, N.; Koros, W. J.; Paul, D. R. Gas sorption and transport in substituted polycarbonates. J. Polym. Sci., Part B: Polym. Phys. 1987, 25, 1999–2026.

    Article  CAS  Google Scholar 

  71. Li, P.; Chung, T. S.; Paul, D. R. Temperature dependence of gas sorption and permeation in PIM-1. J. Membr. Sci. 2014, 450, 380–388.

    Article  CAS  Google Scholar 

  72. Wang, Y.; Ma, X.; Ghanem, B. S.; Alghunaimi, F.; Pinnau, I.; Han, Y. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 2018, 3, 69–95.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22078245 and 21861016), YLU-DNL Fund (No. 2022009). We also greatly appreciate the characterization by the Analytic and Testing Center of Tiangong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Jie Mao or Xiao-Hua Ma.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Material

10118_2023_3012_MOESM1_ESM.pdf

Remarkably Improved Gas Separation Performance of Polyimides by Forming “Bent and Battered” Main Chain Using Paracyclophane as Building Block

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, LJ., Weng, YT., Raiz, A. et al. Remarkably Improved Gas Separation Performance of Polyimides by Forming “Bent and Battered” Main Chain Using Paracyclophane as Building Block. Chin J Polym Sci 41, 1617–1628 (2023). https://doi.org/10.1007/s10118-023-3012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-3012-5

Keywords

Navigation