Skip to main content
Log in

Temperature-induced Evolution of Micro-structure and Chain Dynamics in Thermoplastic Polyurethane with Low Hard Segment Content as Studied by In Situ Synchrotron SAXS and Time-Domain NMR Experiments

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The microstructural evolution of a thermoplastic polyurethane (TPU) with low hard segment content has been monitored utilizing in situ real-time synchrotron small angle X-ray scattering (SAXS) and time-domain nuclear magnetic resonance (NMR) measurements. The TPU is composed of 23 wt% of [4,4-methylenediphenyl diisocyanate (MDI)]-[1,4-butanediol (BD)] chain segments, which form hard domains, as [polytetrahydrofuran (PTHF)] forming soft domains. The number and distribution of monomer units in hard blocks is determined by the successive self-nucleation and annealing thermal fractionation technique. In situ SAXS method reveals heating-induced increase in the spacing of hard and soft domains, while time-domain 1H-NMR characterizes the changes in the phase composition and chain dynamics in these domains. A glassy fraction of short MDI-BD chain segments in hard domains passes through Tg above ambient temperature. At higher temperatures, MDI-BD nanocrystals start to melt. Sequence length distribution of MDI-BD chain segments causes a distribution in crystal sizes and wide melting temperature range. The melting is accompanied by the mixing of MDI-BD with PTHF segments in soft domains, and by increase in segmental mobility in these domains. Above 180 °C, the TPU melt is homogeneous on the scale above nanometers according to SAXS data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. He, Y.; Xie, D.; Zhang, X. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J. Mater. Sci. 2014, 49, 7339–7352.

    Article  CAS  Google Scholar 

  2. Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015.

    Article  Google Scholar 

  3. Cheng, B.; Gao, W.; Ren, X.; Ouyang, X.; Zhao, Y.; Zhao, H.; Wu, W.; Huang, C.; Liu, Y.; Liu, X.; Li, H.; Li, R. K. Y. A review of microphase separation of polyurethane: characterization and applications. Polym. Test. 2022, 107, 107489.

    Article  CAS  Google Scholar 

  4. Bonart, R.; Morbitzer, L.; Hentze, G. X-ray investigations concerning the physical structure of cross-linking in urethane elastomers. II. Butanediol as chain extender. J. Macromol. Sci. Part B 1969, 3, 337–356.

    Article  Google Scholar 

  5. Saiani, A.; Novak, A.; Rodier, L.; Eeckhaut, G.; Leenslag, J.W.; Higgins, J.S. Origin of multiple melting endotherms in a high hard block content polyurethane: effect of annealing temperature. Macromolecules 2007, 40, 7252–7262.

    Article  CAS  Google Scholar 

  6. Blackwell, J.; Lee, C.D. Hard-segment polymorphism in MDI/diol-based polyurethane elastomers. J. Polym. Sci. Polym. Phys. Ed. 1984, 22, 759–772.

    Article  CAS  Google Scholar 

  7. Saiani, A.; Daunch, W.A.; Verbeke, H.; Leenslag, J.W.; Higgins, J.S. Origin of multiple melting endotherms in a high hard block content polyurethane. 1. Thermodynamic investigation. Macromolecules 2001, 34, 9059–9068.

    Article  CAS  Google Scholar 

  8. Fernández-d’Arlas, B.; Maiz, J.; Pérez-Camargo, R. A.; Baumann, R.P.; Pöselt E.; Dabbous, R.; Stribeck, A.; Müller, A. J. SSA fractionation of thermoplastic polyurethanes. Polym. Cryst. 2021, 4, 10148.

    Google Scholar 

  9. Balko, J.; Fernández-D’Arlas, B.; Pöselt, E.; Dabbous, R.; Müller, A.J.; Thurn-Albrecht, T. Clarifying the origin of multiple melting of segmented thermoplastic polyurethanes by fast scanning calorimetry. Macromolecules 2017, 50, 7672–7680.

    Article  CAS  Google Scholar 

  10. Kong, Z.; Ying, W.; Hu, H.; Wang, K.; Chen, C.; Tian, Y.; Li, F.; Zhang, R. Formation of crystal-like structure and effective hard domain in a thermoplastic polyurethane. Polymer 2020, 210, 123012.

    Article  CAS  Google Scholar 

  11. Wang, H.; Zhang, L.; Peh, K. W. E.; Yu, Q.; Lu, Y.; Hua, W.; Men, Y. Effect of phase separation and crystallization on enthalpy relaxation in thermoplastic polyurethane. Macromolecules 2022, 55, 8566–8576.

    Article  CAS  Google Scholar 

  12. Stribeck, A.; Eling, B.; Pöselt, E.; Malfois, M.; Schander, E. Melting, solidification, and crystallization of a thermoplastic polyurethane as a function of hard segment content. Macromol. Chem. Phys. 2019, 220, 1900074.

    Article  Google Scholar 

  13. Leung, L. M.; Koberstein, J. T. Small-angle scattering analysis of hard-microdomain structure and microphase mixing in polyurethane elastomers. J. Polym. Sci. Polym. Phys. Ed. 1985, 23, 1883–1913.

    Article  CAS  Google Scholar 

  14. Koberstein, J. T.; Russell, T. P. Simultaneous saxs-dsc study of multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19, 714–720.

    Article  CAS  Google Scholar 

  15. Tian, Q.; Yan, G.; Bai, L.; Li, X.; Zou, L.; Rosta, L.; Wacha, A.; Li, Q.; Krakovský, I.; Yan, M.; Almásy, L. Phase mixing and separation in polyester polyurethane studied by small-angle scattering: a polydisperse hard sphere model analysis. Polymer 2018, 147, 1–7.

    Article  CAS  Google Scholar 

  16. Koberstein, J. T.; Gancarz, I.; Clarke, T. C. The effects of morphological transitions on hydrogen bonding in polyurethanes: preliminary results of simultaneous dsc-ftir experiments. J. Polym. Sci., Part B: Polym. Phys. 1986, 44, 2487–2498.

    Article  Google Scholar 

  17. Li, C.; Liu, J.; Li, J.; Shen, F.; Huang, Q.; Xu, H. Studies of 4,4′-diphenylmethane diisocyanate (MDI)/1,4-butanediol (BDO) based tpus by in situ and moving-window two-dimensional correlation infrared spectroscopy: understanding of multiple dsc endotherms from intermolecular interactions and motions level. Polymer 2012, 53, 5423–5435.

    Article  CAS  Google Scholar 

  18. Kong, Z.; Tian, Q.; Zhang, R.; Yin, J.; Shi, L.; Ying, W.; Hu, H.; Yao, C.; Wang, K.; Zhu, J. Reexamination of the microphase separation in mdi and ptmg based polyurethane: fast and continuous association/dissociation processes of hydrogen bonding. Polymer 2019, 185, 121943.

    Article  CAS  Google Scholar 

  19. Wang, Z.; Li, X.; Pöselt, E.; Eling, B.; Wang, Z. Melting behavior of polymorphic mdi/bd-block tpu investigated by using in-situ saxs/waxs and ftir techniques. hydrogen bonding formation causing the inhomogeneous melt. Polym. Test. 2021, 96, 107065.

    Article  CAS  Google Scholar 

  20. Koberstein, J. T.; Galembos, A. F.; Leung, L. M. Compression-molded polyurethane block copolymers. 1. Microdomain morphology and thermomechanical properties. Macromolecules 1992, 25, 6195–6204.

    Article  CAS  Google Scholar 

  21. Fernández-D’Arlas, B.; Balko, J.; Baumann, R.P.; Pöselt, E.; Dabbous, R.; Eling, B.; Thurn-Albrecht, T.; Müller, AJ. Tailoring the morphology and melting points of segmented thermoplastic polyurethanes by self-nucleation. Macromolecules 2016, 49, 7952–7964.

    Article  Google Scholar 

  22. Spiess, H. W. 50th Anniversary perspective: the importance of nmr spectroscopy to macromolecular science. Macromolecules 2017, 50, 1761–1777.

    Article  CAS  Google Scholar 

  23. Litvinov, V.; Men, Y. Time-domain NMR in polyolefin research. Polymer 2022, 256, 125205.

    Article  CAS  Google Scholar 

  24. Kurosu, H.; Chen, Q. Structural studies of polymer blends by solid-state nmr. Annu. Reports NMR Spectrosc. 2004, 52, 167–200.

    Article  CAS  Google Scholar 

  25. Voda, A.; Beck, K.; Schauber, T.; Adler, M.; Dabisch, T.; Bescher, M.; Viol, M.; Demco, D. E.; Blümich, B. Investigation of soft segments of thermoplastic polyurethane by nmr, differential scanning calorimetry and rebound resilience. Polym. Test. 2006, 25, 203–213.

    Article  CAS  Google Scholar 

  26. Litvinov, V. M.; Bertmer, M.; Gasper, L.; Demco, D.E.; Blümich, B. Phase composition of block copoly(ether ester) thermoplastic elastomers studied by solid-state nmr techniques. Macromolecules 2003, 36, 7598–7606.

    Article  CAS  Google Scholar 

  27. Dumais, J. J.; Jelinski, L. W.; Leung, L. M.; Gancarz, I.; Galambos, A.; Koberstein, J. T. Phase separation in polyurethanes-a deuterium NMR study. Macromolecules 1985, 18, 116–119.

    Article  CAS  Google Scholar 

  28. Kintanar, A.; Jelinski, L. W.; Gancarz, I.; Koberstein, J. T. Complex molecular motions in bulk hard-segment polyurethanes: a deuterium nmr study. Macromolecules 1986, 19, 1876–1884.

    Article  CAS  Google Scholar 

  29. Meltzer, A. D.; Spies, H. W.; Eisenbach, C. D.; Hayen, H. At the interface between hard and soft segments of a model polyurethane: a 2H NMR study of order and mobility. Macromol. Rapid Commun. 1991, 12, 261–268.

    Article  CAS  Google Scholar 

  30. Kornfield, J. A.; Spiess, H. W.; Nefzger, H.; Hayen, H.; Eisenbach, C.D. Deuteron NMR measurements of order and mobility in the hard segments of a model polyurethane. Macromolecules 1991, 24, 4787–4795.

    Article  CAS  Google Scholar 

  31. Meltzer, A. D.; Spiess, H. W. Motional behavior within the hard domain of segmented polyurethanes: a 2H NMR study of a triblock model system. Macromolecules 1992, 25, 993–995.

    Article  CAS  Google Scholar 

  32. Ishida, M. Solid-state 13C NMR analyses of the microphase-separated structure of polyurethane elastomer. Macromolecules 1996, 29, 8824–8829.

    Article  CAS  Google Scholar 

  33. Okamoto, D. T.; O’connell, E. M.; Cooper, S. L.; Root, T. W. Soiid-state 13c nuclear magnetic resonance characterization of mdi-based polyurethanes. J. Polym. Sci., Part B: Polym. Phys. 1993, 31, 1163–1177.

    Article  CAS  Google Scholar 

  34. Zhang, R.; Yu, S.; Chen, S.; Wu, Q.; Chen, T.; Sun, P.; Li, B.; Ding, D. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state nmr. J. Phys. Chem. B 2014, 118, 1126–1137.

    Article  CAS  PubMed  Google Scholar 

  35. Mauri, M.; Dibbanti, M.K.; Calzavara, M.; Mauri, L.; Simonutti, R.; Causin, V. Time domain nuclear magnetic resonance: a key complementary technique for the forensic differentiation of foam traces. Anal. Methods 2013, 5, 4336–4344.

    Article  CAS  Google Scholar 

  36. Assink, R.A. Study of domain structure in polyurethanes by nuclear magnetic resonance. J. Polym. Sci. Polym. Phys. Ed. 1977, 15, 59–69.

    Article  CAS  Google Scholar 

  37. Assink, R.A.; Wilkes, G.L. Pulsed nuclear magnetic resonance for studying phase separation in block and segmented copolymers. Polym. Eng. Sci. 1977, 17, 606–612.

    Article  CAS  Google Scholar 

  38. Mokeev, M. V.; Zuev, V. V. Rigid phase domain sizes determination for poly(urethane-urea)s by solid-state NMR spectroscopy. correlation with mechanical properties. Eur. Polym. J. 2015, 71, 372–379.

    Article  CAS  Google Scholar 

  39. Terban, M. W.; Seidel, K.; Poselt, E.; Malfois, M.; Baumann, R. P.; Sander, R.; Paulus, D.; Hinrichsen, B.; Dinnebier, R. E. Cross-examining polyurethane nanodomain formation and internal structure. Macromolecules 2020, 53, 9065–9073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Powers, D. S.; Vaia, R. A.; Koerner, H.; Serres, J.; Mirau, P. A. NMR characterization of low hard segment thermoplastic polyurethane/carbon nanofiber composites. Macromolecules 2008, 41, 4290–4295.

    Article  CAS  Google Scholar 

  41. Voda, M.A.; Demco, D.E.; Voda, A.; Schauber, T.; Adler, M.; Dabisch, T.; Adams, A.; Baias, M.; Blümich, B. Morphology of thermoplastic polyurethanes by 1H spin-diffusion NMR. Macromolecules 2006, 39, 4802–4810.

    Article  CAS  Google Scholar 

  42. Müller, A. J.; Michell, R. M.; Pérez, R. A.; Lorenzo, A. T. Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur. Polym. J. 2015, 65, 132–154.

    Article  Google Scholar 

  43. Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J. F.; Perrin, R.; Loup, F. On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU. Polymer 2020, 207, 122882.

    Article  CAS  Google Scholar 

  44. Wu, W.; Luo, X. L.; Ma, D. Z. Miscibility of the segmented polyurethane blends with chlorinated poly(vinyl chloride). Eur. Polym. J. 1999, 35, 985–990.

    Article  CAS  Google Scholar 

  45. Barendswaard, W.; Litvinov, V. M.; Souren, F.; Scherrenberg, R. L.; Gondard, C.; Colemonts, C. Crystallinity and microstructure of plasticized poly(vinyl chloride). a 13C and 1H solid state nmr study. Macromolecules 1999, 32, 167–180.

    Article  CAS  Google Scholar 

  46. Fernández-D’Arlas, B.; Baumann, R. P.; Pöselt, E.; Müller, A. J. Influence of composition on the isothermal crystallisation of segmented thermoplastic polyurethanes. CrystEngComm 2017, 19, 4720–4733.

    Article  Google Scholar 

  47. Terban, M. W.; Dabbous, R.; Debellis, A. D.; Pöselt, E.; Billinge, S. J. L. Structures of hard phases in thermoplastic polyurethanes. Macromolecules 2016, 49, 7350–7358.

    Article  CAS  Google Scholar 

  48. Idiyatullin, D. S.; Khozina, E. V.; Smirnov, V. S. Studies of domain morphology in segmented polyurethanes by pulsed NMR. Solid State Nucl. Magn. Reson. 1996, 7, 17–26.

    Article  CAS  PubMed  Google Scholar 

  49. White, J.L.; Wachowicz, M. Chapter 7 polymer blend miscibility. Annu. Reports NMR Spectrosc. 2008, 64, 189–209.

    Article  CAS  Google Scholar 

  50. Jack, K.S.; Whittaker, A.K. Molecular motion in miscible polymer blends. 1. Motion in blends of PEO and PVPH studied by solid-state 13C t1P measurements. Macromolecules 1997, 30, 3560–3568.

    Article  CAS  Google Scholar 

  51. Zhang, C.; Yang, Z.; Duong, N.T.; Li, X.; Nishiyama, Y.; Wu, Q.; Zhang, R.; Sun, P. Using dynamic bonds to enhance the mechanical performance: from microscopic molecular interactions to macroscopic properties. Macromolecules 2019, 52, 5014–5025.

    Article  CAS  Google Scholar 

  52. Litvinov, V.; Deblieck, R.; Clair, C.; Fonteyne, W. Van Den; Lallam, A.; Kleppinger, R.; Ivanov, D.A.; Ries, M. E.; Boerakker, M. Molecular structure, phase composition, melting behavior, and chain entanglements in the amorphous phase of high-density polyethylenes. Macromolecules 2020, 53, 5418–5433.

    Article  CAS  Google Scholar 

  53. Ginzburg, V. V; Bicerano, J.; Christenson, C. P.; Schrock, A. K.; Patashinski, A. Z. Theoretical modeling of the relationship between Young’s modulus and formulation variables for segmented polyurethanes. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 2123–2135.

    Article  CAS  Google Scholar 

  54. Tao, H. J.; MacKnight, W. J.; Hsu, S. L.; Fan, C. F. Application of a molecular simulation technique for prediction of phase-separated structures of semirigid model polyurethanes. Macromolecules 1994, 27, 1720–1728.

    Article  CAS  Google Scholar 

  55. Fernandez d’Arlas, B.; Rueda, L.; Stefani, P. M.; dela Caba, K.; Mondragon, I.; Eceiza, A. Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim. Acta 2007, 459, 94–103.

    Article  Google Scholar 

  56. Lu, Y.; Luo, X.; Ma, J.; Zhang, Z.; Ma, D. Studies on chain extension reaction of poly(ε-caprolactone) segmented polyurethane with different soft-segment molecular weights. Chem. Res. Chinese Univ. 2001, 11, 1919–1923.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 22161132007) and BASF within the framework of NAO (Network for Advanced Materials Open Research).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Litvinov or Yong-Feng Men.

Ethics declarations

The authors declare no interest conflict.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, HR., Litvinov, V., Yu, W. et al. Temperature-induced Evolution of Micro-structure and Chain Dynamics in Thermoplastic Polyurethane with Low Hard Segment Content as Studied by In Situ Synchrotron SAXS and Time-Domain NMR Experiments. Chin J Polym Sci 41, 1902–1911 (2023). https://doi.org/10.1007/s10118-023-2988-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2988-1

Keywords

Navigation